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On going beyond the first-order logic
in testing the validity of its formulas

A case study

1. Let us fancy for a moment that the first-order logic (FOL) is decidable. And let the famous
Gödelian sentence (G) about its own unprovability, after its encoding in the language of arithme-
tic, be put as the consequent in the conditional whose antecedent is obtained as the conjunction
of Peano axioms (P); thus we have:P ⇒ G — a sentence recorded in the language of first-order
logic. According to the above supposition regarding decidability, it can be decided whether the
formulaP ⇒ G is valid or not. Is it valid, thenG is provable in arithmetic, contrary to Gödel’s
(1931) result. Is it not valid, then with the same method one can check whether validity attaches
to the formulaP ⇒ ¬G. If so, then¬G is provable on the basis of P, again contrary to Gödel’s
assertion that neitherG nor its negation is provable in Peano arithmetic.

Thus, when denying undecidability of first-order logic, one rejects incompletability of for-
malized arithmetic of natural numbers. Such a rebellion has been staged by Leon Gumański in
his paper titled "The Decidability of the First-Order Functional Calculus". (in this issue). There
would be no reason to bother about that claim for anyone convinced by the arguments of Gödel.
Church, Turing and Post. However, there is a kinship between Gumański’s claim and the current
strong AI, calledcomputationalism, that may be worth considering. This kinship is not to mean
that computationalism challenges those limitative results like Gumański does; this only means
a trend to extending the field of decidability. The computationalists do not pretend to use the
first-order logic algorithms in every artificial reasoning. What they do pretend is that for any
reasoning there must be possible to device a suitable algorithm, which in some cases has to be
stronger than the means of FOL.

Such a project might have as its motto the following statement by Turing (1950, Section "The
Mathematical Objection"); it alludes to the Gödelian sentence when used as evidence of human
superiority over machines.

"Our superiority can be only felt on such an occasion in relation to the one machine over
which we scored our petty triumph. There would be no question of triumphing simultane-
ously overall machines. In short, then, there might be men cleverer than any given machine,
but then again might be other machines cleverer again, and so on."

The italicized (by Turing) "all" refers not to all possible machines but those actually given. Tu-
ring seems to have in mind his study of 1939 where he considers an infinite series of ever stronger
machines. In what follows, a case will be considered in which a problem not being solvable in
FOL becomes solvable with additional resources, namely a piece of knowledge which makes it
possible to construct a concrete counterexample. Should we regard such a new device, when
put in the form of algorithmic procedure, as a cleverer machine in Turing’s sense? The present
author does not intend to answer the question but just to produce a case to make the problem
more conspicuous.

In such a framework, Gumański’s research may be considered as one in which a system has
been devised clever enough to solve problems which in FOL itself are not solvable. Then the
rejection of G̈odel results as intended by the Author would fail but the unintended result might
become a useful contribution to AI research.1

1 A simpler explanation of the disagreement between Gumański’s contention and the commonly acknow-
ledged limitative results might consist in supposing an error in his reasoning. However, as far as I know,
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Though the strong AI followers do not question the undecidability of logic, they believe that
whatever occurs in human reasoning is due to an algorithm. Thus, according to that view, when
one reasons in a way which he or she regards as intuitive, in fact, one is steered by a hidden
algorithm without being aware of that process. This is not inconsistent with the undecidability
results concerning FOL, since the algorithm in question may belong to a stronger logic. Anyway
– it is argued by computationalists – no proceses in the real world, including mental processes,
can be uncomputable.

2. Let us examine a certain formula of FOL for which there fails the strongest method of testing
validity from among those available in FOL. However, the same formula can be rejected by
constructing a counterexample that resorts to a piece of extralogical knowledge. The case to be
studied is the following formula (called "CC" for "Case Considered"):

[CC] ∀x∃yRxy ⇒ ∀xRax.

It is no theorem of FOL, but one can neither prove it nor disprove because of an infinite sequence
of loops which must appear in the process of testing. The process, using the method of analytic
tableaux (Beth’s semantic tableaux would also do), will be referred to as PIL (the Process of
Infinite Looping). It runs as follows.

[1] ∀x∃yRyx
[2] ¬∀xRax
[3] ¬Rab 2

[4] ∃yRya 1

[5] ∃yRyb 1

[6] Rca 4

[7] Rdb 5

[8] ∃yRyc 1

[9] ∃yRyd 1

..............................

And so we go on, each elimination of the existential quantifier, as in 6 and 7, leading back
to formula 1 to be satisfied with newly introduced individuals (as, say,c andd), and this
produces ever new individuals due to the repeated procedure of the existential quantifier
elimination.

This situation will be interpreted in different ways by a computationalist and by so-
meone believing that in some cases human intuition alone is able to solve a problem
unsolvable for algorithms. Let the latter be calledintuitionist (in a special, ad hoc coined,
meaning).

The intuitionist’s comment runs as follows. The process will never stop, hence the
problem is unsolvable for the algorithm, while intutively we can be certain of two things.
First, that the formula is not valid, since there is a lot of counteramples supplied by our
knowledge, both mathematical and empirical. Second, that the process never stops. The

many attempts were made by the Author to obtain a critical examination of his claim, but it proved difficult
to find anybody who would scrutinize the course of reasoning. Some friendly critical remarks were by
him obtained in private communications but these, he believes, did not destroy the argument, just helped to
improve it technically.
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latter judgment derives from the observation that the loops must infinitely be generated by
the structure of the formulas in question. When a new individual is being introduced by
the lastly occurring existential quantifier, the universal formula has to be once more tested
against the existence of that individual, and according to the same formula, its existence
generates the next individual, and so on in infinity. The clause ‘and so on, in infinity’ is
what no algorithm can arrive at, while with humans it expresses a simple observation of
regular recurrence for which there is no reason to halt.

A computationalist, on the other hand, would argue as follows. The observation con-
cerning the infinite series of recurring loops may be wrong. We cannot be sure of it,
because only an algorithm can grant us certainty. Should it be true, it would result from
a hidden algorithm of which the person reasoning is not aware of. Such an algorithm is,
presumably, encoded in a language of neural system.

The nature of such hidden algorithms and their relation to human consciousness may
be grasped through the following parable. In the operating system Unix there are pro-
grams calleddemonswhich are active without being noticed by the user. They control the
functionig of the system and pay useful services when not being asked for that. Thus they
behave very differently from a software whose functioning in each step is controlled by a
user. A computationalist would claim that when performing a reasoning like that discus-
sed above, the reasoner consciously follows a program involved in the rules of logic up
to a certain moment. It is up to that moment in which he perceives that the loops should
infinitely recur. And this means that another software must have switched on, to wit a de-
mon, which performed the hidden unconscious inference leading to the conclusion about
PIL. And so, intuition is just a hidden algorithmic process performed by a logical demon.

3. However, a more cautious computationalist might prefer avoiding such a recourse to
occult forces, and suggest the following reasoning instead. Let us pick a finite domain to
check whether the denial of CC is satisfiable in it. If so, then CC is not universally valid,
hence it is not a theorem of FOL.

Consider a finite domain with linear ordering, including at least four individuals in
which the relation ofbeing a neighbourholds, defined as follows:y is said to be a neigh-
bour ofx,N(y, x) for short, if eitherx is the successor ofy or y is the successor ofx. In
this domain the denial of CC is true since there holds both the assertion of the antecedent
and the negation of the consequent of CC:

AA: ∀x∃yN(y, x) and
NC: ¬∃y∀xN(y, x).
Let the domain in question consist of the first four natural numbers <1, 2, 3, 4>. It is
easily seen that every element has a neighbour and none is a neighbour of every element.

However, it is not necessary to mention definite objects, as numbers or other ones.
The counterexample can be produced in a more abstract way — as concerned with any
objects linked with one another by relations whose formal properies are defined in logical
and set-theoretical terms alone.

The relation to order the set in question is defined as transitive, asymmetric and con-
nected in that set, while the neighbourhood relation as symmetric and non-transitive in the
same set. The other assumption is to the effect that the domain consists of exactly four
individuals. Its wording requires no more than the language of FOL with identity. When
defining the formal properties of relations, one has to use the concept of set and member-
ship, hence a set-theoretical language. Since set theory can be replaced by higher-order
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logics, the counterexample in question may be regarded as stated in sole logical terms
(without any extralogical concepts) but going beyond the limits of first-order logic.

Once having such a counterexample, we draw the metalogical conclusion that there is
a domain in which the denial of CC holds, hence CC is no universally valid formula, And
so the case is solved, owing to that small step towards a stronger system.

4. There are immense possibilities of obtaining ever stronger systems so that problems
insoluble so far become solved owing to new devices. The issue was dealt by Gödel
1936 and Turing 1939. With G̈odel a set of more and more powerful systems is ordered
according to the hierarchy of types. Here is his statement (ad hoc translation by WM).

"Now, let Si be the system of logic ifi-th order in which the natural numbers are
regarded as individuals. That is, more precisely:Si should include variables and
quantifiers for natural numbers, for classes of natural numbers, for classes of classes
of natural numbers, and so on, up to classes ofi-th type, together with appropriate
logical axioms, but it does not include any variables of higher type. Then, certainly,
there are sentences inSi which are provable inSi+1 but not inSi."

The proving means here making formalized proofs, and this is a mechanical procedure.
Thus the systems of which G̈odel speaks can be understood as machines. This provides a
link between the above statement by Gödel and Turing’s 1950 text (as quoted in Section
1). In both there occurs an infinite sequence of ever cleverer machines, with first-order lo-
gic at the very beginning of that sequence. A systematic and thought-provoking treatment
of such a hierarchy is found in Turing 1939. Let me introduce this study with quoting
Hodges (WWW text).

"Turing’s 1938 Princeton Ph.D. thesis, work conducted in close cooperation with
Church, was entitled Systems of logic defined by ordinals, and published as (Turing
1939). Predominantly the work consisted of highly technical developments within
mathematical logic. However the driving force lay in the question: what is the con-
sequence of supplementing a formal system with uncomputable deductive steps? In
pursuit of this question, Turing introduced the definition of an ’oracle’ which can sup-
ply on demand the answer to the halting problem for every Turing machine. Turing
gave his subject-matter an interpretation which described the mathematician’s ’intu-
ition’ in theorem-proving, and Newman (1955) effectively identified the uncomputa-
ble ’oracle’ with intuition. This was perhaps going too far since the ’oracle’ is capable
of far more than any human being; nevertheless Newman had a unique status as Tu-
ring’s collaborator at this period and must reflect the tenor of Turing’s discussions. In
any case, Turing makes it clear that the ’intuition’ being discussed is related to the
human act of seeing the truth of a formally unprovable Gödel statement. To summa-
rise, it is notable that Turing’s 1938 work focussed on the same issue as Penrose now
raises: the interpretation of uncomputable deductions."

There is a dramatic split between Turing 1939 and Turing 1950. The former stresses
the necessity of intuition conceived as non-mechanical process to handle uncomputable
deductions, while the letter thinks of reasoning as being totally reducible to mechani-
cal procedures. Nevertheless they have something in common. This is the vision of a
potentially endless sequence of reasoning systems ordered according to the increasing
deductive power, like in G̈odel 1936.

This is why we are not helpless in the face of more involved problems which exceed
the capabilities of elementary logic. However, there is a price to be paid for that intellec-
tual comfort, as can be best seen from Gödel’s approach combined with Quine’s idea of
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ontological commitment. According to Quine’s criterion of existence "to be is be value
of a bound variable", logics of higher and higher order, so abundantly offered by Gödel,
imply the existence of abstract Platonian entities. This makes also evident a division of
labour between humans and machines. A computing machine can solve very complex
problems owing to some software and data based on strong assumptions due to the bold
Platonian approach. To opt for such an approach, going very far beyond the mundane
realm of first-order logic, it is a human affair and human responsibility.
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