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Abstract. Confining considerations to expressions in the prenex normal form and to economic proofs (i. e. without superfluous transformations) constructed according to the method of semantic tableaux, certain conditions and negative criterions of provability are stated at first. Next some solutions of decision procedure for special cases are pointed out. Then a test is described for an arbitrary expression t whether there exists its proof having length k. Finally a bound for k is established beyond which further quest of a proof is useless as no proof of t can exist.

1. Introduction and preliminaries

In our paper [9] we have pointed out to an error in Church’s proof that the first–order functional calculus is undecidable. Now the aim of the present paper is to show that his theorem is erroneous, too. As a matter of fact we have already devoted two former papers to the same problem. Our first proof of the decidability of the first–order functional calculus presented in [6] was based on a system, called “SA”, of the calculus. The system was a modification of the axiomatic system described in [3]. Some readers of [6] suspected (wrongly) that SA was not a correct system of the calculus. So in [7] it was shown that the same result could be grounded on Beth’s method of semantic tableaux (Cf. e. g. [2]). On the other hand, both papers, [6] and [7], made use of a reduction theorem proved by L. Kalmár and I. Surányi in [4]. However, again, certain readers of the paper were inclined to believe that there must be an error in the reduction theorem. That is why the theorem will be left out of account in the present paper. Besides, in order to simplify considerations the so–called o–variables and control tables – a technical device applied in [6] and [7] – will be dispensed with. More emphasis will be laid on explanations and illustrations here. 

The paper is arranged as follows. After preliminaries Section II shows certain peculiarities of proofs by Beth’s method of semantic tableaux. One indicates the possibility to characterize and to investigate tableaux by means of an analysis of atomic expressions which occur in tableaux. Notions useful for such investigations are defined. Section III deals with conditions of closing tableaux and with negative criterions of existence of proofs. Section IV explains how to determine whether a tableau–construction of a given length can be closed. The final Section V gives the proof that the calculus is decidable, after discerning and examining three forms of prefix. 

Now for a start let us explain some terms applied in the present paper in order to distinguish some types of utterance.

Assumptions – arrangements introduced with the aim to regulate and make perspicuous the form of proofs constructed according to the method of semantic tableaux. They do not change the set of theorems of the calculus.

Conventions – settlements which refer to terms or symbols but do not have the character of definition.

Observations – claims that need not be proved for they are obvious.

Remarks – comments drawing attention to something worthy of notice.

Besides, in what follows we shall make use, among others, of the following terms and symbols:

CONVENTION 1.1. The word “calculus” means always here the same as “first–order functional calculus”. The word “expression” denotes any well–formed formula of the calculus. An expression is fully open if and only if it does not contain any quantifiers.

CONVENTION 1.2. Using the term “atomic expression” we shall usually mean atomic expressions standing separately but sometimes we shall also apply the term to such atomic expressions which are a part of some compound expression. In the latter case – in order to avoid ambiguity – the words “not separate” will be added in parantheses.

CONVENTION 1.3. The letters “a”, “b”, “c” (with indices or not) stand for individual variables. The letters “t”, “u”, “v”, “w” (with indices or not) represent any expression. The symbol “u[a]” indicates any expression u which contains an individual free variable a (u may contain other variables as well). The symbol “u[a/b]” denotes an expression obtained from u by substitution of a variable b for the variable a. We shall distinguish between bound individual variables x1, x2,…(called “x–variables”) and free individual variables y1, y2,…(called “y–variables”). The notation “(x1)”, “(x2)”,… will be used for universal quantifiers and “(Ex1)”, “(Ex2)”,… for existential quantifiers. The symbols “(a)”, “(Ea)” denote any universal, existential quantifier respectively. 

Other terms and symbols will be introduced later on.

ASSUMPTION 1.1. Let us consider any expression t. However, without loss of generality we shall assume that t fulfils the following conditions: 
1° t does not contain any free individual variables,

2° t does not contain any sentential variables,

3° t does not contain truth–functors other than “–” (the sign of negation) and “(” (the sign of conjunction),

4° t is in a prenex normal form,

5° no quantifier bounds vacuously in t.

This assumption can be accepted here because it is possible to transform any expression into an equivalent one that fulfils all the conditions 10 – 50 
.
2. Semantic tableaux

Of special interest for us the problem will be whether t is a theorem of the calculus (i. e. if t is universally valid). We shall identify the problem with the question if t can be proved by the method of semantic tableaux
. The reader is supposed to be familiar with the method which in fact is nothing but a certain way of writing down indirect proofs. Nevertheless, some details will be recalled here with the aim of facilitating comprehension and making some terms more explicit.

DEFINITION 2.1. A construction built of all tableaux that have a common initial part with the expression t at the beginning of the right column of this part will be called “a tableau–construction of t”.

For instance, Tab. 1 below represents a tableau–construction of the expression: 

W

(Ex1) (x2)–[fx2(–(fx1(fx2)]

In particular a tableau–construction of t may consist of one single tableau (as in Tab. 3 below).

RULES OF INFERENCE. In the light of Assumption 1.1 it should be clear that only the following six rules (reduction schemata) can be employed in a tableau–construction of t: 
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K1, K2 are sets of expressions (may be empty) here and the y–variable b in F(a) should always be “new” (i. e. such that it does not yet occur in the tableau) whereas the y–variable b in F(Ea) can be “new” if and only if no y–variables are present in the tableau yet, so if there are some y–variables, b should be (freely) chosen from among them
.

 Besides the closure rule states that a tableau is closed if and only if one and the same atomic expression occurs in both columns of the tableau.

As a point of departure for further analyses let us take by way of a paradigm example the proof of the expression W mentioned above.

Tab. 1
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False
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(Ex1) (x2)–[fx2(–(fx1(fx2)]
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Analysing Tab. 1 it is easy to notice that the method of semantic tableaux makes it possible to dissolve compound expressions into ever smaller ones and to obtain finally some atomic expressions. The example shows that it is sometimes necessary to apply a rule (reduction schema) to the same quantifier more than once.

DEFINITION 2.2. If all the quantifiers of t are reduced for the first time and then all the fully open compound expression divided (by appropriate rules for truth–functors) into their atomic components, then we shall say that stage 1 of the tableau–construction of t is terminated. Inductively, the name “stage k of the tableau–construction of t” (k=2,3…) will be given to that part of a tableau–construction of t which starts after stage k–1 is terminated and comes into being when in each tableau of the construction to some of the quantifiers of t (at least to the last one – counting from the left to the right) appropriate rules have been applied for the k–th time, then every fully open compound expression reduced to its atomic components and terminates just before to any quantifier of t a rule is applied for the k+1 time.

DEFINITION 2.3. In case a tableau–construction C of t comes to an end with stage k, we call C “k–stage tableau–construction of t”. Then, every tableau T contained in a certain k–stage tableau–construction of t will be named “k–stage tableau” and the largest part of T which belongs to stage i (i ( k) of the construction will be termed “i–th subtableau of T”. Hence T consists of k subtableaux.

DEFINITION 2.4. When all the tableaux of a construction are closed, we say that the whole construction is closed and makes a (k–stage) proof of t. If there is a k–stage proof P of t but for every i<k there is no i–stage proof of t, then P is an economic (k–stage) proof of t. In that case we shall say that the number k is the minimum length coefficient of the proof of t.

EXAMPLE 2.1. For instance, Tab. 1 is a specimen of 2–stage tableau–construction, which comprises four 2–stage tableaux because the initial common part splits into two subtableaux at stage 1 and then each subtableau of stage 1 splits again into two other ones. As all the four tableaux are closed, the whole 2–stage tableau–construction is a proof. 

OBSERVATION 2.1. Splitting of a tableau is a result of an application of rule FC. 

LEMMA 2.1. If a k–stage tableau–construction of t has n (n=1,2,…) subtableaux at stage 1, then every subtableau of stage i (i k) splits again into n subtableaux at stage i+1.

PROOF. According to definition 2.2 all appropriate rules for truth–functors have to be applied at each stage. Then if rule FC is used p times at stage 1 producing n subtableaux (n=2p), rule FC must be applied also p times in each subtableau of stage 2. The same regularity holds good at further stages.

LEMMA 2.2. The number of tableaux in a construction depends on the fact how many times the rule FC is employed at stage 1. Suppose there is a k–stage tableau–construction of t and the rule FC has been applied p times at stage 1, producing n subtableaux, then the whole construction embraces nk tableaux.

PROOF. There are n subtableaux at stage 1 and by Lemma 2.1 every subtableau of stage i (i<k) splits by FC into n subtableaux of stage i+1, hence the number of tableaux at stage i+1 is n times greater than at stage i. 

ASSUMPTION 2.1 We assume that the order of transformations by FN, TN, FC, TC is at each stage i (i>1) the same as at stage 1.

DEFINITION 2.5. When a subtableau S of stage i splits into subtableaux S1, S2,…, Sn of stage i+1


S1
•

•
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S
Sj

•
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•


Sn

we shall say that S is anterior to S1, S2,…, Sn and Sj is on the j–th branch of S.

At the same time we take for granted that:

ASSUMPTION 2.2. For every S the branches of S are numbered on the same principle (i. e. in the same manner).

EXAMPLE 2.2. In Tab. 1 the subtableau No 1 of stage 1 is anterior to the subtableaux No 11 and No 12 of stage 2 and the subtableau No 11 is on the first branch of the subtableau No 1 whereas the subtableau No 12 is on the second branch of the subtableau No 1. The transformations of stage 2 are in accordance with Assumption 2.1 and 2.2.

REMARK 2.1. Observe in Tab. 1 that the subtableau No 2 is already closed at stage 1. However, it should be born in mind that further transformations – although useless – are admissible even on closed tableaux. Just to stress this possibility suitable rules have been applied at stage 2 in the subtableau No 21 and No 22 as well. This explains why our definition of “k–stage tableau–construction of t” could be so formulated that   a l l   tableaux of the construction are k–stage tableaux.

REMARK 2.2. It is clear that it would be futile to use after a certain stage of a tableau–construction only rules for truth–functors because it would not result in creating new expressions different from those that exist already in the tableau–con​struction. Hence appropriate rules for quantifiers should be utilized at every stage. However, as a matter of fact in some cases it may turn out that in order to achieve a proof of t it would be enough at a certain stage i (i>1) to start transformations by reducing the j–th quantifier (j>1) instead of the first. To illustrate this possibility let us compare two tableau constructions, Tab. 2 and Tab. 3 below. Both tableau–constructions are proofs of the same expression. However, in Tab. 2 after the end of stage 1 the successive transformations start with the reduction of the third quantifier. On the contrary, in Tab. 3 stage 2 begins by reducing the first quantifier. None the less the set of atomic expre​ssions in these tableaux is similar: in the lower part of Tab. 2 we find the set Z1={+gy1y1,+fy2y2,fy3y3} [the sign plus (lack of it) in front of an expression indicates that the expression stands in the left (right) column of the tableau] whereas in Tab. 3 the set Z2={+gy3y3,+fy2y2,fy4y4} occurs. The difference between the sets Z1, Z2 is inessential because the sets are of the same kind. What means the phrase “the same kind” here will be explained later on (see p. 19, Definition 5.2).

Anyhow, it might be well to mention that in some economic proofs it is necessary to reduce universal quantifiers that appear at the beginning of t only once, namely at stage 1.

Tab. 2

True
False

 (fy1y1(–fy2y2) (gy1y1

fy1y1(–fy2y2 

gy1y1
fy1y1
–fy2y2
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Tab. 3
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REMARK 2.3. It is worth noting that a tableau can sometimes be closed on account of a compound fully open expression u being present in both columns of the tableau. Therefore in principle it would be justified to stop there without trying to terminate the stage. Still in such cases further transformations are always admissible for they yield a set of tableaux each of which is closed, too. And so suppose the expression u is a negation, then by a sequence of applications of rules TN, FN an expression v not being a negation comes into being in both columns of the tableau. For instance if u = – –v, we obtain:

True
False

– –v

–v
v
– –v
–v
v

If v is not a negation, then it must be a conjunction uw and by rules TC, FC the tableau splits into two closed tableaux:
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w

It should be immediately obvious that if u or w is not atomic, succeeding steps lead ultimately only to closed tableaux with atomic expressions at the end of the stage and for each of these tableaux there will be such an atomic expression which appears in both columns of the tableau (a precise proof of it is by induction on the number of truth–functors).

REMARK 2.4. For all that reason we shall hereafter take into consideration k–stage tableau–constructions of t with terminated stages exclusively. Definition 2.2 has already been formulated in accordance with this intention.

CONVENTION 2.1. From now on we shall use the letter “n” to denote the number of subtableaux which are present at stage 1 of any k–stage tableau–con​stru​ction of t. 

Now, there is an important point which must not be overlooked.

REMARK 2.5. Since every tableau of a k–stage tableau–construction of t ter​minates in atomic expression, in the light of previous Remark 2.3 and 2.4 it should be obvious to the reader that it is enough to inspect only the atomic expressions in order to determine whether all the tableaux of the construction are closed.

In view of this it will be convenient to characterize any k–stage tableau–con​struction of t in the shape of a tree, taking into account only the atomic expre​ssions and supposing that all subtableaux have been numbered in succession in conformity with Assumption 2.2.

ASSUMPTION 2.3. Every atomic expression occurring in the left (True) side of a subtableau (tableau) is preceded by the sign “+”.

Graph G

Stage
1
2
k–1
k






[image: image1.wmf]1

1

+

q

R







[image: image2.wmf]1

1

+

p

R







[image: image3.wmf]1

1

+

n

R




[image: image4.wmf]n

n

q

R

+





[image: image5.wmf]1

1

R









[image: image6.wmf]n

n

R

2





t








[image: image7.wmf]1

1

2

+

n

R







[image: image8.wmf]n

n

R









[image: image9.wmf]n

n

n

R

+

2




[image: image10.wmf]1

1

)

n

(

r

R

-

-







[image: image11.wmf]n

q

R









[image: image12.wmf]n

r

R



where p=n+n2+n3+…+nk–2, q=p+nk–1, r= q+nk (hence r is the number of sub​ta​bleaux whereas nk is the number of tableaux in this construction). The set 
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DEFINITION 2.6. 
[image: image14.wmf]j

e

R

 is the ordered set of all atomic expressions occurring in the e–th subtableau 
[image: image15.wmf]j

e

S

 which belongs to stage 1 if en (e=j) and if e>n, then 
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ASSUMPTION 2.4. For every jn, dr, er: the elements of 
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CONVENTION 2.2. From now on we shall use the abbreviation “in analogous places in the sets X, Y” for “in the place g in the e–th expression of X and in the place g in the e–th expression o Y”.

In the light of assumptions 2.1, 2.2, 2.3, 2.4 the following observation is obvious:

OBSERVATION 2.2. The sets 
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(e ≠ d) have the same structure: they differ at most in the shape of y–variables in analogous places and if a y–variable has been substituted by rule F(a) (or F(Ea)) in a certain place g in 
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REMARK 2.6. We can characterize any tableau T of the construction as a sequence of sets of atomic expressions like this:

T:

[image: image24.wmf]k

k

j

e

j

e

j

e

R

,...,

R

,

R

2

2

1

1


where 
[image: image25.wmf]i

i

j

e

R

 (ik) is the set of all atomic expressions occurring in that subtableau 
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 of T which belongs to stage i of the construction.

CONVENTION 2.3. We shall sometimes say that 
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Of special interest are those tableaux that can be characterized by the following sequence:
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DEFINITION 2.7. Tableaux of this kind will be called “homogeneous”. They consist of subtableaux 
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 Tableaux that are not homogeneous are heterogeneous.

For illustrative purposes let us return to Tab. 1 for a while. As we have already alluded the whole construction there comprises four 2–stage tableaux. Two of them are homogeneous, namely the first one consisting of the subtableau No 1 and No 11, then the last one embracing the subtableau No 2 and No 22.

REMARK 2.7. If in a k–stage tableau–construction there is only one tableau (n=1), it must be homogeneous for it is characterized by the sequence (j=1, ei=i):
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Tab. 3 may serve again as an example here.

3. Provability

Some conditions and negative criterions

Now, let us consider another 2–stage tableau construction:

Tab. 4
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False
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1

the end of stage 1
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Again there are four tableaux in this construction. In order to compare the sets of atomic expressions in them it may be expedient to employ the following arrangement (as in the foregoing the sign plus means that the expression is in the left column):

Tableau
Stage 1
Stage 2
Type

No 1 + No 11
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It appears that in every column of a homogeneous tableau the succeeding atomic expressions begin with the same predicate variables at both stages. It is left to the reader to check up that the same regularity will hold good at the next stages. A similar regularity can be also found in the sole tableau of Tab. 3. This is a result of assumptions 2.1, 2.2, 2.3 and 2.4.

OBSERVATION 3.1. In atomic expressions of a homogeneous tableau a predicate variable F occurs in a column of stage i (i>1) if and only if the variable F is present in the same column of stage 1.

COROLLARY 3.1. For every k: if at stage 1 of a k–stage homogeneous tableau T there is no predicate variable which can be found in both columns at the beginning of atomic expressions, then the tableau is not closed.

PROOF. The corollary is a consequence of Observation 3.1 and the clo​sure rule.

Hence we have already a negative criterion of existence of a proof of the expression t:

NC1   If in a k–stage tableau–construction of t there is a homogeneous tableau T which fulfils the condition formulated in the antecedent of the foregoing Corollary 3.1, then the construction is not closed and no proof of t is possible.

What this amounts to is the statement that in certain cases the problem of decision can be solved negatively by means of one–stage tableau–construction. We shall later see that there are more cases in which a one–stage tableau–con​stru​ction turns out to be sufficient.

From our negative criterion NC1 we conclude by conversion that:

COROLLARY 3.2. If t is provable, every homogeneous tableau T of a tableau–construction of t is such that a predicate variable F commences an atomic expre​ssion in both columns of stage 1 of T.

However the fact remains that:

OBSERVATION 3.2. For each subtableau 
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COROLLARY 3.3. For each subtableau  
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Corollary 3.3 indicates a necessary condition of provability of t but not a sufficient one because the presence of Fj in both columns of 
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does not testify that by suitable substitutions of y–variables for x–variables (by virtue of the rules for quantifiers) the closure of all tableaux of the construction can be achieved after k stages (for some k).

Now, let us introduce some new symbols and terms relative to the sets of atomic expressions in a k–stage tableau construction of t.

DEFINITION 3.1. 
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That is to say, the symbol ‘
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’ stands for the set of (all and only) those atomic expressions which are in at least one of the successive (starting with stage 1) subtableaux 
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 of a certain tableau T. Hence the set 
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 is the set of all atomic expressions present in the tableau T. If i=1, then 
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 and is the set of atomic expressions of a subtableau of stage 1.

CONVENTION 3.1. For every ik one is allowed to say accordingly that 
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 occurs (is) at stage i. 

DEFINITION 3.2. When a subtableau 
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Sometimes it will be convenient to speak about the set of (all and only) atomic expressions which can be found in at least one of the subtableaux 
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DEFINITION 3.3.
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and for some d and every g ≤ n: 
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Graphically: (if i=1, instead of 
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ASSUMPTION 3.1. Each of the sets Q1, Q2,…,Qq (q=1+n+…+nk–1) in any k–stage tableau–construction of t is ordered according to the same principle.

DEFINITION 3.4. When 
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Let us return for a while to the tableau–construction represented in Tab. 4. The comparison of the set 
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 with the set 
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and 
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 discloses an essential regularity:

OBSERVATION 3.3. The sets Qf, Qg (f,gq) differ at most in the shape of  the y–variables in analogous places and if a y–variable has been introduced by virtue of the rule F(a) (or F(Ea)) in a certain place p in Qf, then a y–variable has also been introduced by virtue of the same rule in place p in Qg.
CONVENTION 3.2. One is allowed to say that 
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occurs (is) at stage i.

DEFINITION 3.5. If there exists such an atomic expression v that 
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, we give expression to this fact saying that there is a closing pair in 
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For instance, the pair {+fy2,fy2} in the subtableau No 2 in Tab. 1 is a closing pair.

CONVENTION 3.3. In what follows in this section (3) the signs “u”, “w” stand for any not identical atomic expressions.

DEFINITION 3.6. A pair of atomic expressions {+u,w} such that both u and w begin with the same predicate variable F will be termed “distinguished”.

DEFINITION 3.7. In case a distinguished pair {+u,w} occurs in the d–th subtableau of a tableau–construction of t but in the same subtableau such substi​tutions by F(Ea) are admissible that would yield a closing pair {+v,v} in place of {+u,w} (both pairs originate from the same pair of (not separate) atomic expressions being present in the matrix of t), then the pair {+u,w} is called a one–stage pair.

Consider for instance the following tableau:

True
False

gy1((–fy2(fy1)

gy1
–fy2(fy1
–fy2​
fy1

the end of stage 1
(x1) (x2) (Ex3) – [gx1((–fx2(fx3)] 

(x2) (Ex3) – [gy1((–fx2(fx3)]

(Ex3) – [gy1((–fy2(fx3)]

– [gy1((–fy2(fy1)]

fy2
x1/y1

x2/y2

x3/y1

The pair {+fy1,fy2} is a one–stage pair because the substitution x3/y2 is also permissible at stage 1 and would give us a closing pair {+fy2,fy2} instead of the pair {+fy1,fy2}.

DEFINITION 3.8. When a distinguished pair 
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 is not a one–stage pair but at stage i+1 such substitutions by F(Ea) are performable that would produce u instead of w or +w instead of +u in the subtableau 
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 would hold good), then the pair {+u,w} is a two–stage pair.

In other words, if there is a two–stage pair 
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, then it is possible to obtain at the next stage a closing pair 
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. The pair {+fy2, fy1} in the subtableau No 1 of Tab. 1 may serve as a concrete example of a two–stage pair (the substitution x1/y2 is not permissible before stage 2).

DEFINITION 3.9. Any pair of atomic expressions which is either a one–stage or a two–stage pair will be called “subclosing”.

LEMMA 3.1. If the expression t has a closed k–stage tableau–construction (a proof), then in every not closed subtableau of stage 1 of the construction there exists at least one subclosing pair of atomic expressions.

PROOF. The rightness of this lemma is again visible from the homogeneous tableaux of the construction. Namely, if  t has a proof, all tableaux of the construction are closed, among others all the homogeneous tableaux, too. However, when a homogeneous tableau Tj is closed, the closure is achieved due to a closing pair {+v,v}. If the pair is not in 
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 (i. e. the subtableau of Tj which belongs to stage 1, jn), then there remain two cases only: either both members of {+v,v} occur at the same stage i or one member of the pair occurs at stage i and the other one at stage i+sk. In the first case, according to Definition 3.7 there is a one stage pair in 
[image: image92.wmf]j

j

S
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We are now in position to complement our previous negative criterion NC1
of provability by a second criterion:

NC2
If in some not closed subtableau of stage 1 of a k–stage tableau–constru​ction of t no subclosing pair of atomic expressions exists, then no proof of t is possible.

PROOF. NC2 follows from Lemma 3.1 by conversion.

OBSERVATION 3.4. It is worth noting that when a certain tableau–con​stru​ction of t consists of no more than one tableau (i. e. n=1), then the graph G (p. 9) reduces to

t
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and the implication in Lemma 3.1 can be strengthen to equivalence. In other words, the condition of provability in Lemma 3.1 becomes not only necessary, but also sufficient.

COROLLARY 3.4. An economic proof of t in which the rule FC is inappli​cable has at most 2 stages.

PROOF. According to Remark 2.7 the sole tableau of the proof is homo​ge​neous and by Lemma 3.1 there must be in 
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a subclosing pair which can be trans​for​med into a closing pair either at stage 1 or at stage 2.

THEOREM 3.1. The set of expressions provable without rule FC is decidable.

PROOF. By Corollary 3.4 use the test described in section 4. 

It may be well to add incidentally that it can be recognized immediately at stage 1 whether the rule FC is applicable at all in a proof of t.

When a tableau–construction of t consists of more than one tableau, the necessary condition of provability indicated in Lemma 3.1 turns out not to be sufficient in general. For it often happens that although the condition is fulfilled no proof of t exists, since it is impossible to find such admissible substitutions by F(Ea) which would transform subclosing pairs into closing ones in each tableau of the construction (substitutions suitable for closure of one tableau may be inappropriate for another tableau). None the less if the condition is not fulfilled, the expression t is unprovable.

At any rate the problem remains still open how to recognize whether the expression t can be proved when stage 1 of a tableau–construction of t embraces more than one subtableau (n>1).

4. Provability. Test for any given number k
When trying to solve the problem of provability it is important to realize and to keep in mind first of all that we do have an effective method to determine whether a tableau–construction of t can be closed at stage k (k=1,2,3,…). Namely, in view of the fact that only one rule F(Ea) allows a choice of substituted y–varia​bles (if there are more than one free variable in the expression transformed), we can for a start check up all admissible substitutions a/b when applying rule F(Ea) at stage 1 of the construction. The number of trials (possible substitutions) is always finite because there is a finite number of free individual variables in the expression to be transformed. If by no means the construction can be closed at stage 1, then for each manner of substituting at stage 1 we can try out all the possible substitutions by F(Ea) at stage 2 taking into account that transformations need not start from the first quantifier (cf. Tab. 2). When this does not result in discovery of a proof either, then for each manner of substituting by F(Ea) at stage 1 and 2  we can put to test all the possible substitutions by F(Ea) at stage 3 and this procedure can be conti​nued up to stage k. When in the course of this procedure a proof of t has already been found at stage i, we know how many stages an economic proof of t demands. If i<k, the proof may be extended up to stage k for it is always permissible to continue transformations even on closed tableaux (cf. Remark 2.1). Hence in this case a k–stage proof of t also exists, although it is not an economic proof. However, when all the trials do not result in a discovery of a proof, it is evident that a k–stage proof of t is impossible.

Then an important problem arises whether it would be expedient to continue the procedure and how long. To put it another way, the question is if it is possible to indicate such a number k which is the limit of purposeful quest for a proof of t. So when the limit is attained and no proof is found, further efforts are useless because t is unprovable.

5. Three types of prefix

Now we shall take advantage of a distinction between the shapes the prefix of t may have.

I. The prefix of t comprises only universal quantifiers, i. e. t has the form:

(a1)(a2)…(am)w

where the matrix w contains no other individual variables than a1,a2…,am. When building a tableau–construction of t, F(a) is the only applicable rule for quanti​fiers in this case and at stage 1 one obtains n subtableaux in which the atomic expre​ssions belonging to the sets 
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LEMMA 5.1. If a set 
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 does not embrace any closing pair (so the subtableau 
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is not closed), then every k–stage tableau–construction of t is not closed either.
PROOF. This is visible from the k–stage homogeneous tableau T of which 
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is the first subtableau (i. e. the subtableau which belongs to stage 1). Namely, the y–variables in the elements of the set 
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. That is why no atomic expression 
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 can make a closing pair with an atomic expression of the set 
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. Besides if in certain places the y–variables are different (identical) in the elements of
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, then the y–variables in the elements of 
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are also different (identical) in analogous places. Hence, as the first subtableau of T is not closed, the whole tableau T cannot be closed either.

And so we conclude:

THEOREM 5.1. Provability of t can be effectively checked up by means of a one–stage tableau–construction of t. The expression t is universally valid if and only if the one–stage tableau–construction is closed.

PROOF. ( from Lemma 5.1 by conversion; ← obvious.

II. The prefix of t is composed of nothing but existential quantifiers, i. e. t is of the form:

(Ea1)(Ea2)…(Eam)w.

In this case the sole applicable rule for quantifiers is F(Ea). It demands to introduce a y–variable while eliminating the first quantifier. The same y–variable, being the only free individual variable in expressions transformed, has to be substituted for all x–variables at every stage of the tableau–construction of t. For that reason it should be immediately evident that the atomic expressions of stage 1 of any homogeneous tableau T of the construction must be repeated at every stage of T. In other words: 
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. But this testifies that T is closed if and only if for every j,e1(n: the set 
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 contains a closing pair of atomic expressions. And so we arrive at the conclusion:

THEOREM 5.2. A one–stage tableau–construction of t suffices, in this case, for verifying whether t is a theorem of the calculus. We are confronted with a positive result of the verification if and only if the construction is closed.

III. In the light of what has been ascertained so far it is enough to confine further discussion only to expressions with a prefix containing both existential and universal quantifiers. Thus let t be an expression of this sort. In other words, t has the form:

(   )(   )…(   )w

where the parantheses “(   )” represent a quantifier, no matter which one.

At first we have to analyse the sets of atomic expressions one may find in a k–stage tableau–construction of t.

The sets 
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 if are not identical, may differ in various respects some of which are essential for the possibility of proving the expression t. In order to elucidate this point certain new notions seem to be indispensable.

DEFINITION 5.1. By “the degree of the set X of atomic expressions” we shall mean the number of distinct individual variables the expressions of the set X are built of.

For instance, the set {+fy1y1,+fy1y2,gy2y1} is of degree 2. The sets 
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 may differ in their degree.

DEFINITION 5.2. Sets X1, X2 of atomic expressions are of the same kind if and only if X1 comes into being from X2 as an effect of simultaneously substituting certain variables for some (or all) individual variables occurring in the elements of X2 and at the same time X2 comes into being from X1 as a result of reverse substitutions (substitutions b/a are reverse of the substitutions a/b).

EXAMPLES. The following sets X1, X2 are of the same kind:

X1 = {fyy1},   X2 = {fyy1},

X1 = {fy, hyy1},   X2 = {fy2, hy2y1},

X1 = {gy1y2, +gy2y1, gy1y1},   X2 = {gy2y1, +gy1y2, gy2y2}.

On the contrary, the set X1 is not of the same kind as X2 in the next cases:

X1 = {fy1y2},   X2 = {hy1y2},

X1 = {fy1y2},   X2 = {+fy1y2},

X1 = {fy1, hy1y2},   X2 = {fy1, hy1y2, gy3},

X1 = {hy1y2, +hy1y2},   X2 = {hy1y1, +hy1y1}.

REMARK 5.1. It is visible that identical sets are of the same kind. We take that empty sets are of the same kind although we shall not take advantage of them. Sets of the same kind may differ only in the shape of individual variables in their elements. Not equivalent sets (not having the same number of elements) as well as sets not having the same degree are always of a different kind. When comparing sets it should be remembered that atomic expressions u, +u have to be treated as distinct.

The sets 
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 may be different in their kind.

DEFINITION 5.3. The kind of a set X of atomic expressions is an equi​valence class (abstraction class) generated by X with respect to the relation of being of the same kind.

DEFINITION 5.4. Sets X1, X2 of atomic expressions are up to degree h of the same kind if and only if 10 both sets X1, X2 are at least of degree h and 20 for every subset Y1 ( X1 of a degree not higher than h there is a subset Y2 ( X2 of the same kind as Y1 and conversely: for every subset Y2 ( X2 of degree not higher than h there is a subset Y1 ( X1 of the same kind as Y2.

For instance, the sets X1={fy1y2,+hy1}, X2={+fy1y2,fy2y1,+hy3} are only to degree 1 of the same kind though the set X1 is of degree 2 whereas X2 is of degree 3.

REMARK 5.2. If the sets X1, X2 are up to degree h of the same kind, it is not excluded that they are also up to degree higher than h of the same kind. And so the sets:

X1={+fy1y2,fy2y1,+hy3}

X2={+fy3y1,fy1y3,+hy2}

are of the same kind up to degree 1, 2 and 3.

DEFINITION 5.5. A set X1 of atomic expressions is a generic extension of degree h of a set X2 if and only if 10 for every subset Y2 ( X2 there is a subset Y1 ( X1  of the same kind as Y2 and besides 20 there is a subset Y3 ( X1 of degree h but of a kind different than all the subsets of X2. In such cases we shall also say that X1 is a generic extension of X2 over Y3.

For instance, the set {fy2y1,+fy1y2,hy1} is a generic extension of degree 1 (over the set {hy1}) and of degree 2 (over the set {fy2y1,+fy1y2,hy1}) of the set {fy1y2,+fy2y1}.

In our further considerations we shall take it for granted that:

ASSUMPTION 5.1. There are m1 existential and m2 universal quantifiers in the expression t. Moreover m1+m2=m.

ASSUMPTION 5.2. The expression t has a proof P with the minimum length coefficient k (Cf. Definition 2.4). If there are more economic proofs of t, P is freely chosen from among them. Let the graph G (p. 9) be the graph of the proof P and T be whichever tableau of P.

Just as we have discerned one–stage and two stage subclosing pairs (of atomic expressions) we shall distinguish one–stage closing pairs from two–stage ones.

DEFINITION 5.6. If in tableau T both +v and v are elements of the set 
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, then {+v,v} is a one–stage closing pair and when one of the expressions +v, v (called “first member”) belongs to 
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 then {+v,v} is a two–stage closing pair.

For example, the pair {+fy2,fy2} in Tab. 1 is a one–stage closing pair in subtableau No 2 whereas the pair {+fy2,fy2} is a two–stage closing pair in the tableau consisting of the subtableau No 1 and No 11.

OBSERVATION 5.1. It is plain that the set 
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 is of a degree not higher than m (Cf. Assumption 5.1) for it embraces (all and only) the atomic expressions that come into being at stage i by transformation of at most m quantifiers of t. Hence the subset 
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is also of a degree not higher than m. Besides, the set X (Y) to which belong all the members of one–stage and all the second members of two–stage closing pairs present in 
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 is also of a degree not higher than m. Moreover, no atomic expressions that belongs to 
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COROLLARY 5.1. If the set 
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 includes a closing pair, then the pair is of a degree not higher than m.

REMARK 5.3. For that reason we shall confine ourselves to analyzing different sets of atomic expressions of degree hm that can be found in tableau T. Nevertheless, in order to avoid misunderstanding it may be well to add at once that the set 
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is liable to be of a degree higher than m but only its subsets of degree hm can be utilized for creating closing pairs (in 
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if the first member belongs to 
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We have characterized any tableau in the graph G by means of a sequence 
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. At present we shall determine similarily a tableau T+ correlated with the given tableau T. Namely:

DEFINITION 5.7. T+ is correlated with T if and only if 10 the following sets occur in turn in the tableau T+ (i+s<k, s>0):
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and besides

20 two conditions are fulfilled at the same time:

a) 
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b) if the set 
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If T is homogeneous, T+ overlaps T.

Accordingly, we define for T+​:

DEFINITION 5.8.
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DEFINITION 5.9.
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 where for some d and g : d+g = pi+s. 

Let us visualize graphically the relation of the tableau T+ to T, supposing that n=2, k=i+4 and 
[image: image140.wmf]1

1

+

+

i

i

j

e

R

is on the first (from above) branch of 
[image: image141.wmf]i

i

j

e

R

. The raising segments relate to the first branch, the sinking segments to the second branch. The tableau T+ is marked with the dashed line and T with the continuous line.
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REMARK 5.4. Note that in all tableaux to which the subtableau 
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 belongs any changes of substitutions by F(Ea) performed in the subsequent subtableaux do not cause changes in other tableau of the proof P (i. e. in tableaux to which 
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We intend to show that if the sets 
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 are of the same kind up to degree m, then it is possible to obtain at stage i+s (for every s) in the tableau T all such kinds of sets of degree hm which occur in T+ one stage futher (i. e. at stage i+s+1).

With this aim in view let us proceed now to proving a lemma in which:

CONVENTION 5.1. The signs “
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/ Sub” denote such sets that come into being at stage i+s in place of 
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respectively when instead of substitutions performed at stage i+s by virtue of the rule F(Ea) in the proof P, certain substitutions Sub are applied at stage i+s being also conformable to F(Ea).

LEMMA 5.2. For every i<k–1: if the set 
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Claim 1. The set 
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/Sub is up to degree m of the same kind as the set 
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Claim 2. The set 
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/Sub is up to degree m of the same kind as the set 
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PROOF. Claim 1. According to definition 5.7. the sets 
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 are on the same branch g, hence ji+s=fi+s+1 and by Observation 2.2 the sets have the same structure.

Now, proving by induction on s, let be s=1. In this case the set 
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. It is sufficient to follow two rules for Sub:

1. When in certain places in the elements of 
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 the y–variables are different (identical) choose for Sub from y–variables admissible by F(Ea) different (identical) variables for analogous places. There is enough y–variables to choose from because one needs for Sub at most m1 different y–variables (see Assumption 5.1) and there are at least m different variables in 
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2. If a y–variable occurs in certain places in the second member v of a closing pair such that 
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For s>1 the proof is analogous.

Claim 2. The proof is analogous to the proof of Claim 1. Replace 
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Lemma 5.2. shows that if the set 
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Next, in the light of Assumption 5.2 that the number k is the minimum length coefficient of proof P, it is easy to notice that there must be in P such a tableau T in which there are no superfluous stages (transformations) and the closing pair appears only at the last stage k. In fact there must exist at least n tableaux of this type in the proof P because the set 
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 in each of these tableaux do not contain any closing pair. The lemma given below refers to such tableaux.

LEMMA 5.3. A certain tableau T in the proof P has the following features:

(I). The set 
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(II). For every i<k there is a number hm such that if the set 
[image: image195.wmf]i

i

j

e

Z

 is of a degree not lower than m, then the set 
[image: image196.wmf]1

1

+

+

i

i

j

e

Z

 is a generic extension of degree h of the set 
[image: image197.wmf]i

i

j

e

Z

.

PROOF. As the existence of at least n tableaux having the feature (I) evidently follows from Assumption 5.2, let us consider an arbitrarily chosen tableau T of this type and then – proving indirectly – let us assume that for a certain i<k and every hm: i is the greatest number such that the set 
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we arrive at the conclusion that the set 
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. Still in this case, by virtue of Lemma 5.2 it is possible to achieve in T a closure at stage k–1. But this contradicts Assumption 5.2 that k is the minimum length coefficient of the proof of t, since T is any tableau having the feature (I) in the proof P.

We now proceed to the next lemma which exposes one more characteristic feature of tableau T.
LEMMA 5.4. The tableau T, that Lemma 5.3 speaks about, apart from the features (I) and (II) may also have the following property:

(III). There is at most one number i such that:

1. the set 
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2. for every hm: the set 
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PROOF. Let 
[image: image209.wmf]i

i

j

e

Z

 be a set of degree f<m. Then in any case the following disjunction must be true:

A1. Either the set 
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When the first disjunct of A1 is true, two cases may take place:

1° The set 
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2° The set 
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In case 1° two situations can be taken into consideration: First – when the sets 
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The second situation may occur when an atomic expression u, absent in the set 
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Now consider the case 2°. The set 
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We have shown so far that if the first disjunct of A1 is true, then in any case which does not lead to contradiction the set 
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Suppose in turn that the second disjunct of A1 is true, i. e. the set 
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is of degree f<m but 
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an atomic expression u belongs in which no more than m different y–variables occur but for every subset X (
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such that u does not belong to X the union {u}(X is of a degree higher than m. (Compare the following example: Let be f=2, m=3, and 
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This is not to deny, however, that when 
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LEMMA 5.5. The minimum length coefficient k of the proof P can be estimated: k<2(.

PROOF. As can be seen from Lemma 5.3 and Lemma 5.4, there are such tableaux in the proof P in which a closing pair appears only at stage k and starting from stage 2 new kinds (i. e. absent at previous stages) of sets of atomic expressions of degree hm occur at every stage – except one stage at most. Thence the number k may be at most by one greater than the number ( (k ( (+1) of all kinds of nonempty sets of a degree not higher than m of atomic expressions which it is possible to construct of the predicate variables being present in the expression t and of m different y–variables. The number   can be estimated in every case.

Namely, it is possible to make mi atomic expressions of one i–ary (i–adic, i–place) predicate variable and m different y–variables (we apply the formula for permutations of m variables taken i at a time with repetitions). As in the sets that we are considering each of expressions can be preceded by the sign plus, we have to distinguish 2mi expressions with one i–ary predicate variable. Now suppose that there are at most r–ary  predicate variables in the expression t and pi is the number of distinct i–ary (ir) predicate variables present in t. Hence, of all the predicate variables that are found in t and of m different y–variables it is possible to build
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different atomic expressions. Let U be the set of all these expressions. There are 2–1 nonempty subsets of U. Note that every set of degree hm that can be met in the tableau T of the proof P is of the same kind as a certain subset of U. However, some subsets of U – although not identical – are of the same kind (e. g. if the binary variable “f” occurs in t and m=3, then there are six sets of the same kind as {fy1y2,+fy2y1}). It follows that 
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<2–1, but as we have already stated k+1, hence k<2.

THEOREM 5.3. The first–order functional calculus is decidable.

PROOF. If the prefix of t consists only of universal or only of existential quantifiers, then according to Theorem 5.1 and Theorem 5.2 provability of t can be checked up by means of one–stage tableau–construction. In case the prefix of t consists of universal as well as of existential quantifiers, it is sufficient to inspect, using the method described in section 4, whether there is a (2–1)–stage proof of t. When such a proof cannot be constructed, then in the light of Lemma 5.5 this is an evidence that t is unprovable.

PROBLEM: Can the procedure of decidability presented above be adequately described in terms of general recursiveness? If not, then Church’s thesis, identifying effectiveness with general recursiveness turns out to be false.
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Leon Gumański

Remarks on Cantor's Diagonal Method
and Some Related Topics

(Sympozjum Bułgarsko–Polskie, Sofia 23–27 IX 1985)

I. In my paper [8] delivered before the 7th International Congress of Logic, Methodology and Philosophy of Science in Salzburg I presented a decision procedure for the functional calculus of first order. This result contradicts the well–known Church's theorem and so the problem arises what an error has been committed in the proof of the theorem. A careful perusal and strenuous analysis have shown that the matter is more serious than it might seem at first. Alonzo Church has namely applied in [2] the so–called diagonal method
 sometimes declared to be „one of the strongest and most famous methods in modern mathematics”
.

The method was introduced by Cantor for the first time in 1874. There has been some disagreement among scientists concerning the correctness of the method. Objections have been raised not only by mathematicians
. However, some celebrities have decidedly refuted them therefore the method has been generally accepted for a long time and brought into practice especially in set theory and in the realm of foundations of mathematics.

The aim of the present paper is to demonstrate that despite its distinguished credentials the method is unreliable and all the purported proofs in which it is employed – though not necessarily their theses – ought to be doomed to oblivion.

It might be well to start with a brief habitual description of the method. We may put it as follows:

One takes into consideration an arbitrarily chosen denumerable subset S of a certain infinite set F of sequences and enumerates one way or another the elements of S, let us say E = <s1, s2, ..., si, ...> where si = <ei1, ei2, ..., eii, ...>. By this means one obtains a sequence of sequences. Then a definition of a „new” sequence d = < d1, d2, ..., di, ... > belonging to the set F is introduced. The definition is so constructed that it ought to be plain that d is different from each si, because di is unlike eii, for every positive integer i. Such a result is usually achieved due to an appropriate function f indicated in the definition of d. Hereafter sequences defined like d will be called ‘diagonal’. It is exactly the definition of a diagonal sequence applied in proofs, which constitutes the gist of the method at issue. The purpose of proofs of this kind is to show that the denumerable subset S is a proper subset of the set F (in symbols S ( F).

It will probably not do to say as much as that to explain what for us will count as the diagonal method. That is why we shall illustrate the method by two paradigm examples.

Example I. Let F be the set of all decimal representations (expansions) of real numbers x in the interval 0 < x ( 1 and let S be any denumerable subset of F. Each decimal fraction of S has the form of a sequence: 0.e1e2e3… We arrange the decimals of S in a sequence E = < s1, s2, …, si, …> choosing a mapping between S and the set N of all positive integers. The resulting sequence of sequen​ces may be depicted as follows:

s1:
 0.e11e12e13…

s2:
 0.e21e22e23…

s3:
 0.e31e32e33…

 .  
 .

 .  
 .

 .  
 .

si:
 0.ei1ei2ei3…eii...

 .  
 .

 .  
 .

 .  
 .

where eik is the kth digit after the decimal point in the ith decimal fraction. Now we define the diagonal sequence d = < d1, d2, …, di, …> using the function f(i) = di:

di = 1 if eii ≠ 1,

di = 2 if eii = 1.

It is claimed that d is a fraction different from all the decimals of S because the ith digit (after the decimal point) in the ith decimal of S is eii while the ith digit in d is di  ≠ eii. On the other hand d is an infinite decimal fraction between 0 and 1, hence it belongs to F.

Example II. Let F be the set of all functions of one variable and S be its denumerable subset that contains only functions assigned by the formulae <A1, A2, …, Ai, …> of a formal system AR of arithmetic according to the following rule (for each natural number n):

fi(n) = 1 if Ai(n) is valid in AR,

fi(n) = 0 if Ai(n) is not valid in AR,

where Ai(n) is the result of substituting the name of the number n for all occurrences of free variables in Ai. Hence we have a sequence E of functions <f1, f2, ..., fi, ...>. We identify fi with the sequence of successive values of fi : <ei1, ei2, ..., eik, ...> where eik = fi(k). Then we define a function h belonging to F:

h(n) = 1 if fn(n) = 0,

h(n) = 0 in other cases.

The diagonal sequence d is the sequence <d1, d2, ..., di, ...> where di = h(i). In other words d is the sequence of successive values of the function h. It is asserted that the function h, identified with d, though belongs to F does not belong to the sequence E, for otherwise it would be fk(k) = 1 iff fk(k) = 0, for a natural number k.

It should be noted that the diagonal method may and has been applied both in direct and indirect proofs. So we consider it advisable to discuss the two cases separately. Moreover, in our considerations we shall confine ourselves at first to proofs constructed on the grounds of naive preaxiomatic set theory and only after that we shall turn to analogous proofs based on axiomatic version of the theory.

IIa. Indirect tactics is the most common form encountered in proofs in which the diagonal method is adopted. W. K. Essler states accordingly that the definition of a diagonal sequence may always serve to deduce an absurdity
 It is important a point to realize and to keep in mind that in indirect proofs no more than one assumption is allowable, namely the negation of the thesis to be proved. Only theorems chosen from the theory on which the proof is founded may occur as other premisses of the reasoning. A definition can be incorporated solely on condition that the existence of the object defined follows from premisses already recognized in the proof. However, the fact of the matter is that the existence of the diagonal sequence d is, as a rule, not a logical consequence of premisses in indirect proofs based on non–axiomatic set theory. The statement of existence, usually overlooked or suppressed, makes actually the second assumption of the proof. For that reason the final conclusion should run in the form of disjunction: either the thesis is true or d does not exist. The contradiction obtained in the proof does not allow to decide which of the two disjuncts is veracious or which premiss is responsible for the contradiction.

A. A. Fraenkel, one of the most prominent originators and propagators of modern set theory, at an early stage of his activity must have felt that something was wrong with indirect proofs applying the diagonal method. Most likely therefore he wrote as follows in [5] about Cantor’s proof of non–denumerability of the continuum:

“Surely anybody who becomes acquainted with this proof for the first time, with all his admiration for the simple and significant fundamental idea (called diagonal procedure) will not be able to suppress a painful feeling … which though does not belie the compelling power of the fundamental idea, nevertheless smells something insidious or at least unfair in the arrangement of its conclusions”
.

IIb. Fraenkel believed that most doubts would disappear if the direct form of proof was chosen. Let us then turn to that kind of proofs. In this case, as well as in the previous one, it is maintained that the diagonal sequence d is different from each sequence si of the subset S. What makes us think so? Authors do not say much about it. They probably treat the point intuitively as obvious. And so for instance if d, si are decimal fractions, as in our Example I, it is usually just stated that the ith digit of si is eii while the ith  digit of d is di ≠ eii 
. The first impression that this explanation is satisfactory turns out, on closer inspection, to be misleading. There is a gap concealed behind the innocent–sounding words. To convince ourselves of this let us first make a query again: How do we know that di ≠ eii? The right answer may seem to read: we know this from the definition of d. But that is not at all the case. The definition only requires that eii should be transformed into a different member di, for each number i. However, this requirement can merely be fulfilled on certain conditions. In order to compare eii with di or to decide if it is possible to convert eii into di​ one must know more about the subset S. Otherwise there is no certainty that the comparison or the conversion can be performed. I am going to show it at once.

When using the diagonal method in proofs one must not specify either the subset S or the enumeration E (although S or E may be characterized in a general way as in Example II), because otherwise an objection may be raised that a dia​gonal sequence can be constructed for the given S and E, however an open problem remains whether it is possible to form a diagonal sequence for other subsets of F and other enumerations as well. That is why, in order to preserve generality it is usually just stated that S and E are freely chosen but fixed within the proof. If so, it cannot be excluded  a priori that S fulfils the condition S = F. The exclusion of the condition is inadmissible for the following reason: From the assumption S ( F it follows immediately:

(+)
S = F or S ( F.

We have to consider both disjuncts of (+) and must not reject any one of them without serious grounds.

Now, supposing S = F it should be clear that d ( S, because d ( F is admitted. Then it follows at once from d ( S that d = sk for some positive integer k. In other words, the defined sequence d belongs to the enumeration E=<s1, s2, ..., si, ...> of S. Nevertheless, in this case it is obvious that d does not exist, for it is impossible to convert ekk into dk in such a way that dk becomes different from ekk (as the definition of d requires) and remains identical with ekk at the same time (because d = sk). In sum, the requirement of the definition cannot be met and the relation f (by means of which d has been defined) is not a genuine function, as no single value exists for the argument k. Or to put it another way, if we assume S = F, then ‘d’ does not denote any existing object, because from the assumption combined with the definition of d a contradiction follows (ekk ( dk​ and ekk = dk​ ). In short, if S = F, ​d does not exist. Hence by contraposition we have: if d exist, then S ( F. In other words S ( F (or S ( F which follows) is a necessary condition of existence of the diagonal sequence d. There are even more necessary conditions of existence of d, as we shall show in a moment.

On the other hand, if we assume the second disjunct of (+):  S ( F, no evidence of existence of a diagonal sequence can be deduced. On the contrary, it turns out that such a sequence may not exist. For instance, in the light of the fact that S is freely chosen, even if S ( F it is not unlikely that S contains the set D of all the sequences built of the same members of which d should be constructed, i. e. D ( S. However, in this case d ( S too for d ( D. Consider by way of illustration our Example I. If S contains all the sequences (decimal representations 0.ei1, ei2, ..., eik, ...) built at most of the digits 1, 2, then d must be one of these sequences, since d should also be constructed of the digits 1,2 only. But when d ( S, we can continue our reasoning in the same way as in the case S = F and demonstrate that D ( S  is one more necessary condition of existence of  d.

And now let us add another remark. Against the background of the statement that S and E are freely chosen, it cannot be  a priori excluded that the enumeration E fulfills the condition eik = dk for every k < i. In this instance the diagonal sequence d is up to ith  member identical with si+1 for every positive integer i. So in our Example I the sequence E may have the form:

s1:
0.123456789012…

s2:
0.223456789012…

s3:
0.213456789012…

s4:
0.211456789012…

 .  
.

 .  
.

 .  
.

s11:
0.2111111111123…

s12:
0.2111111111223…

 .  
.

 .  
.

 .  
.

si:
0.211……….1211…eii…

si+1:
0.211……….1211…diei+1i+1…

 .  
.

 .  
.

 .  
.

It can be easily seen that < d1, d2, ..., dk> = <ei1, ei2, ..., eik> for every i and k < i. Now consider a principle, let us call it P, to the effect that if for every i and  k < i: < d1, d2, ..., dk> = <ei1, ei2, ..., eik>, then there exist, in infinity, such a member of E which is identical with d. The principle P may seem quite plausible, especially when one notes a certain similarity to many thesis already acknowledged in mathematics (like 1 = 0.999…). Suppose we accept the principle P. Then we fall into contradiction immediately: d is different from all the members of E (let us take it for a moment that this can be shown convincingly) and d is identical with one of them. Hence d does not exist. This argument is to give evidence once more of the fact that existence of a diagonal sequence is not absolute, it depends not only on some necessary conditions, such as S ( F or D ( S, but also on certain accepted or rejected principles.

On the other hand, we cannot indicate any sufficient condition of existence of diagonal sequences except perhaps such general ones as e.g.: no contradiction follows from the definition of the diagonal sequence added to the given non contradictory framework. But conditions of this kind give no criterion and may by called in question if one stipulates more than mere non–contradictoriness for the existence of abstract objects.

For all that reasons we must consider the existence of diagonal sequences as highly uncertain and their definitions as inadmissible, at least as long as it is not demonstrated that the defined diagonal sequence exists. Consequently, if such a demonstration has not been given, we must recognize any proof (even a direct one) that employs the diagonal method to be fallacious. As a matter of fact the demonstration is lacking in proofs which are not based on axiomatic set theory.

III. There are a number of points here which need explaining or disentangling at this stage in order to forestall some expected objections. So let us break off our main considerations for a while.

First of all it seems apposite to focus our attention on the correctness of definitions. Until 20th century the problem was not dealt with by logicians and mathematicians as scrupulously as it was deserving. Cantor, like most of his contemporaries, appears not to realize that a mere act of defining does not warrant existence of an intended object. In particular he surely believed that each diagonal sequence was an actual entity which became known due to its definition. Neither was he aware that definitions might cause contradictions. The antinomies of set theory, which were discovered about the turn of 20th century, were a real shock for him and for other scientists as well. Several remedies were offered, most of them artificial, devised ad hoc. However, as H. Poincaré rightly advised, we ought to learn a lesson from the discovery of antinomies. In the first place it is worthy of notice that all the paradoxes of logic and set theory either immediately derive from or can be shown to depend on definitions. Such a phenomenon cannot be accidental. This observation gives us a heuristic indication where we should search for means suitable for removal of antinomies. It is definitions that must be responsible for each paradox in question. So it seems reasonable to demand that they should fulfill certain conditions. Yet it would be hard to draw up a full specification of all indispensable conditions because correctness of various kinds of definitions depends on diverse factors. None the less, it is now generally agreed that each object defined correctly must exist
. On the other hand, different views have been advanced and defended with regard to the problem what the word ‘existence’ means in relation to mathematical and logical objects. This is not the  right place or time for a discussion of the problem but we may take it for granted that non–contradictoriness is a necessary, if not also sufficient, condition for the existence of abstract entities of this sort. That is why we have said above that the sequence d does not exist when d = sk, for then dk is both identical with and different from ekk. What is more, in that case the definition of the diagonal sequence d must be regarded as incorrect.

It can be easily anticipated that many persons would object. Why should we recognize as incorrect for instance the definition of the sequence d in Example II? The function h requires only to replace 0 by 1 or conversely 1 by 0. This can be always done”, they could say. However, in reality the operation is feasible unless and until some additional requirements interfere.

It is a regrettable mistake to think that any definition which turns out to be correct under certain circumstances retains its correctness independently of conditions. The meaning of the term defined and existence of the object denoted by the term depend on the framework into which the definition has been incorporated.
 Taken separately (as an inscription) the definition is not univocal or rather void of meaning. When confining ourselves to functions we can state that in order to define a function f  (by means of an equivalence) first of all one must fix precisely its domain and counterdomain
. This is usually done by the context (explanations or premises, or theory, deductive system, framework) which constitutes the background against which the definition of f is presented. Any essential modification of the context may result in a change or annihilation of the function. Thus for instance the function of being a square root of a number defined by the equivalence: 
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in case the domain is qualified as the set of natural numbers, differs from the function defined by means of the same equivalence when the domain is restricted to positive even numbers. None the less in both cases the definition (++) is correct. However, if we extend the domain over the set of all real numbers, the definition (++) loses its correctness because the necessary condition to the effect that for each argument there exists only one value is violated (hence the relation is no more a function)
 and moreover it is possible to infer contradictions from this definition combined with some theorems of the theory of real numbers. Consequently, the object (function) so defined does not exist on the ground of this theory. In general we have a negative criterion: if a definition added to a consistent set of sentences (premises, theory, framework) entails a contradiction, the object defined does not exist and the definition is faulty. Still, it might be well to lay emphasis once more on the fact that the same definition may be faultless when joined to another set of sentences.

It should be worth while making the observation by way of digression that in the light of the just mentioned criterion the problem of antinomies appears in a new shape. An antinomy is not a mysterious logical puzzle, nor is a threat to the very foundation of logic. It is simply a quite innocuous proof in which the derived absurdity demonstrates that against the background constituted by a set of accepted premises (or theory) the defined object does not exist and the applied definition is inadmissible.

IV. Now let us return to the main drift of our consideration. We have ascertained that the existence of diagonal sequences is doubtful, questionable. Nevertheless the creators of axiomatic set theory took a different view and declared themselves for the existence of the sequences. Why did they make such an option? This is a question for the history and sociology of science. It seems that not only cognitive but also emotional and even aesthetic motives have played an important part. If they had made another option, they would probably have obtained a much simpler set theory, without various kinds of infinity.

In any case, the Zermelo axiomatization and all its subsequent modifications were devised in order to protect the Cantor’s theory from antinomies on the one  hand and to preserve at least some of the so–called impredicative definitions on the other
. With a view to ensuring existence for objects defined by means of impredicative definitions, among them for diagonal sequences, Zermelo introduced the axiom of separation which states that for any set X and any definite condition C there is a subset Y of X containing all and only those elements of X for which the condition C holds good. It has been in dispute how to understand ‘definite conditions’. Diverse proposals have been advanced. At any rate all the offered solutions have tended to vindicate and to retain, in spite of Poincaré’s strong criticism, those impradicative definitions which are indispensable for the construction of Cantor´s set theory.

It must be admitted that owing to this shift many proofs grounded on axiomatic set theory and carried out according to the diagonal method have been acknowledged to be formally correct since the existence of the diagonal sequence is secured axiomatically. But are they convincing? The answer must be in the negative. A proof is convincing if and only if all its basic premises are recognized as true and all its consequences follow from the premises. However, in the proofs in question one of the fundamental premises is the just mentioned axiom of separation (called sometimes ‘axiom of subset’ or ‘definitional axiom’). This axiom raises grave objection. All sentential functions with a free variable different from ‘Y’ are, in practice, treated as definite conditions. It is assumed that each element of any given set X should either fulfil the condition C or not (in the exclusive sense of the conjunction ‘or’). If no element of X fulfils C, the separated (defined) subset Y of X exists but is empty. Otherwise Y is not empty. And so, with respect to the given set X, the condition C may belong to one of two classes according as it separates from X an empty or non–empty subset.  Still the sentential functions under consideration ought to be devided with regard to X not only into two but at least into four classes. For there may also be such sentential functions (conditions) that some elements of X neither satisfy nor violate (do not satisfy) them, e. g. because the theory we are taking advantage of is weakly incomplete and within its framework satisfaction of C cannot be proved or disproved for some elements of X. In this instance the subset Y is undetermined and it is impossible to state its existence or non–existence. Besides, the discovery of antinomies has brought to light the fact that some sentential functions (conditions) can be satisfied and not satisfied at the same time by an element of X since both things are provable. It should be plain that under these circumstances the subset Y does not exist, i. e. the condition C separates no subset from X. To this last class belong the sentential functions which occur as definiens in impredicative definitions. Yet the axiom of separation is so applied as if the third and the fourth class of sentential functions were neglected. As a matter of fact the axiom does not lead to contradiction within set theory, for other axioms are so adjusted that not every set X can be accepted as existing. Very comprehensive sets cannot be introduced. Owing to these favourable special circumstances the dangers which are inherent in the axiom are avoided or rather they do not manifest themselves. At all events the axiom of separation taken as such in seclusion cannot be viewed as obvious or well–founded. It is unsafe, untrustworthy. That is why the axiom is unfit for justifying the previously mentioned option made by the originators of axiomatic set theory. The assumption that the diagonal sequence d exists is arbitrary. Its acceptance is nothing but a result of a decision, of a subjective preference. Now, existence of real objects as well as of abstract, theoretical ones does not depend on decision, on human will. In particular it is not sufficient to decide that diagonal sequences should exist. For all these reasons we must consider all proofs constructed according to the dia​gonal method and based on axiomatic set theory as not convincing, as mere samples of logical deduction grounded on arbitrary assumptions. The method does not make a reliable instrument for scientific investigations.

V. And now to conclude we may return to our point of departure. As I have already alluded A. Church in his proof that the functional calculus of first order is undecidable has made use of the diagonal method. And that is his mistake. The calculus has its own objective properties independent of our will. It is decidable as I managed to demonstrate in my paper [8]. No arbitrary decisions, no assumptions, no axioms can help it.
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� Free individual variables may be bound by universal quantifiers placed in front of the expression. How sentential variables can be equivalently eliminated cf. e. g. [1] p. 17.


� Instead of Beth’s tableaux any other system can be applied with regressive proofs, e. g. Smullyan’s analytic trees or the deductive systems SI presented in [8].


� The rule F(Ea) is often formulated without restrictions relative to the variable b (even in the original Beth’s texts). But such formulations are too broad and consequently can be misleading for they allow to introduce “new” variable at each application of the rule. However, some logicians have already realized that a procedure of this kind is usually pointless and suitable restrictions should be imposed on the variable b. Cf. e. g. [3] p. 78 rule (d) or [5] p. 188 routine D.


� Cf. the condition concerning the variable b in rule F(a).


� Cf. the demonstration of Theorem XVIII on p. 360.


� Cf. A. A. Fraenkel [7] p. 54.


� Cf. A. A. Fraenkel [6].


� Cf. W. K. Essler [4] p. 33.


� Cf. A. A. Fraenkel [5] p.  10.


� Even authors who construct their proof adopting axiomatic set theory act similarily. Cf. e. g. Fraenkel [7] p. 53, Kleene [9] p. 7.


� For instance A. Mostowski in his textbook [10] p. 249 wrote: ”one may use a symbol denoting an object, no matter which (of an arbitrary logical type) only if we know that the object exists”.


� Cf. E. W. Beth [1] p.363f.


� Cf. P. Suppes [11] p. 231.


� Cf. P. Suppes [11] p.158.


� Cf. E. W. Beth [1] especially §§ 120, 121, 150.
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