
CHAPTER SIX

The Predicate Calculus

1. Subject, predicate, quantifiers

1.1. In the beginning was the Word teaches us the Gospel according
to St. John. But which kind of word? The Name, destined to
play the role of the subject in a sentence, or rather the Predicate?
And, if we opt for the Name, should it be the Proper Name, as in
‘John the Evangelist’, or rather the General Name, as in ‘Man’?
These grammatical distinctions are of consequence for logic, too.
In discussing them I shall take advantage of a grammatical theory
suited for the language of modern logic.

The dilemma as worded above in the biblical quotation can be
expressed in the theory called categorial grammar. Though the
adjective ‘categorial’ refers to a feature common to all grammars,
as each of them offers a categorization, in this case there is a spe-
cial reason to take advantage of this term. Namely, the theory in
question is built on a distinction which makes it possible to de-
velop a calculus of categories. It is the distinction between basic
categories and derived categories of expressions. This terminol-
ogy implies that some categories are derivable from other ones;
at bottom there are those which are not derivable themselves but
provide the rest with the basis for derivation. The set of rules
to define valid derivations, namely those which result in syntacti-
cally coherent (i.e., grammatical) expressions, forms the calculus
characteristic of such a grammar.

Thus, when metaphorically asking what kind of word was at the
beginning, we raise the question about categories to be acknowl-
edged as basic. The answer given in terms of categorial grammar
allows us to clearly observe the grammatical difference between
the language of Aristotelian logic and that of modern logic: in the
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former there is the basic category of general names which does
not occur at all in the latter, while in the latter there is the ba-
sic category of individual names which does not occur at all in
the former. As for predicates, in the standard version of predicate
logic called first-order logic, there is an infinite set of predicate cat-
egories, each of them being directly derivable from the category of
individual names.1

The set of predicate categories is infinite since a predicate can
be derived, that is to say, formed out of one (individual) name,
or two, three, four names, and so on (theoretically) to infinity (in
practice, though, we deal with a finite and rather a limited num-
ber). The names (which in this context are always construed as in-
dividual names) giving rise to a predicate are called its arguments.
Thus there are one-argument (one-place, unary), two-argument
(two-place, binary), three-argument (three place, ternary), etc.,
predicates. Let these categories be exemplified by the following
predicates:

‘... is a cat’, ‘...is a descendant of ...’, ‘... lies between ... and ...’,

respectively, where each string of dots is to be filled up by a name,
and the number of such strings corresponds to the arity (i.e., the
number of arguments) of a predicate.

An expression belonging to a derived category is called a func-
tor by analogy to a mathematical function sign which is also ac-
companied by a sequence of arguments. A functor is seen as an
‘active’ element in forming a compound expression out of simpler
ones, hence the classification of functors is made both according
to the category of expression which a given functor makes up and
the categories of expressions from which the compound is made.

The syntactic description of predicate logic involves two basic
categories, viz., that of names and that of sentences; let them be

1 In logics of higher orders (see 3.3 below) there are predicates whose deriva-
tion from the basic category of individual names is not direct; directly a pred-
icate of order n derives from predicates of order n − 1, i.e. those of which
n-order predicates can be predicated. A brief information about higher-order
logics is found in ‘Predicate logic’ by W. Marciszewski in Logic [1981]; this au-
thor gives an introduction to categorial grammar in the same volume, while its
more advanced discussion is found in Buszkowski, Marciszewski, van Benthem
(eds.) [1988].
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symbolized by the indexes ‘n’ and ‘s’, respectively. A unary pred-
icate forms a sentence out of one name; this fact is conveniently
symbolized by the compound index ‘s:n’, where the letter before
the colon (sometimes a fraction line is used instead) hints at the
category of the compound expression, and the letters following the
colon (or, written under the line) hint at the arguments from which
the compound is produced. Correspondingly, a binary predicate
is indexed as s:nn, while the expression resulting from a sentence
(such as an argument) transformed into a name should be indexed
as n:s.2

The syntactic fact that predicates in modern logic do not belong
to basic categories does not undermine their import in the semantic
dimension, that is the role of conveying information. This role,
which in traditional logic is played by a general name, functioning
either as the grammatical subject or as the predicate of a sentence,
is in modern logic taken over by predicates; the (individual) names
act only as elements necessary for syntactic construction, while the
informative function belongs wholly to predicates.

1.2. Let us more closely examine the fact that the predicate alone,
and not in collaboration with the grammatical subject, is to furnish
information about the state of affairs referred to by the sentence
in question. This semantic difference entails a radical difference of
the syntactic structures of sentences.

To explain this issue, let us consider the following sentence (in
which the subject phrase is underlined while the predicate is in the
slant type):

α: Every man who names me traitor is lying like a villain.

The above sentence is a paraphrase (unfortunately, a clumsy one)
of the following exclamation found in Shakespeare:

2 The index n:s indicates, e.g., the category of the functor ‘that’, as brought
forward by the following analysis. ‘It rains’ is a sentence, and ‘that’ transforms
it into the name ‘that it rains’. That the latter is a name follows from the fact
that it can be used as an argument of a sentence-forming functor, as ‘is bad’, to
result in the sentence ‘That it rains is bad’. It is not the only syntactic interpre-
tation of ‘that’; this particle has more philosophically and logically interesting
intepretations (this problem is extensively discussed by Marciszewski [1988]).
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β: Whatever in the world he is that names me traitor, villain-like
he lies.

While α is a single sentence, due to the fact that it involves only
one occurrence of the verb ‘is’, β is composed of two sentences, as
seen in the double occurrence of ‘is’ accompanied by double occur-
rence of the subject ‘he’. Such a subject, as being only a pronoun
without any specific content, does not convey any information,
hence the task of carrying the whole information is performed by
the predicates ‘names me traitor’ and ‘villain-like lies’.

Now let us replace the personal pronoun ‘he’ by the variable x
ranging over the entire universe (as expressed by the phrase ‘what-
ever in the world’), and let us make the conditional structure of β
more explicit through introducing the connective ‘if...then’. Thus
we obtain the following (again, underlining the subject and slant-
ing the predicate):

γ: For any x if x names me traitor, then x villain-like lies.

The form γ is the typical transformation of a universal one-subject
sentence, in traditional logic reckoned among the so-called general
or categorical statements, into a conditional sentence in which
the whole information is contained in predicates.3 English, like
other natural languages, can use both forms, conditional as well
as categorical, while in the logical languages examined here, only
one of these methods is adopted, namely the categorical α-form
in traditional logic (cf. Chapter Four, Subsec. 1.2, etc.) and the
conditional γ-form in modern logic.

Both forms should be carefully examined from the rhetorical
viewpoint, for two reasons at least. First, because we practise
rhetorics in natural languages, which employ both structures; sec-
ond, there are serious philosophical motivations behind either of
these logical structures. Those philosophical issues, in turn, are

3 The terms ‘sentence’ and ‘statement’ are used interchangeably, and so are
the terms ‘general statement [sentence]’ and ‘categorical statement [sentence]’.
As to the latter pair, its first member was introduced in Chapter Four, Sub-
sec. 1.2, where the adjective ‘general’ was more convenient as hinting at the
generality of the subject discussed in that context. In the present context it is
the adjective ‘categorical’ which proves more convenient as opposing the adjec-
tive ‘conditional’.
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concerned with cognitive processes of consequence for the art of
argument.

There is an ambiguity in the meaning of the term ‘predicate’
which should be removed before we proceed with our inquiry. The
ambiguity appears in the sentences made out of two terms and
copula, such as “She is an artist”. The parsing of such a sentence
can result either in
she [is an artist]
or in
she is [an artist]
(as above, the underlining marks the subject, while the slant, here
combined with brackets, marks the predicate).

The first parsing agrees with a standard grammatical rule, the
second follows the usage of traditional logic in which the copula
appears between the terms, the term preceded by it being called
‘predicate’ (Latin praedicatum). To avoid ambiguity, I reserve the
expression predicate for the case of twofold partition, to comprise
copula and the name that follows it, and adopt the expression
predicate term to the case of the threefold partition in which the
verb ‘is’ is predicated of two entities, one of them denoted by the
subject term, the other one by the predicate term. This way of
speaking is usual in describing the sentence forms of traditional
logic.4

1.3. As said with reference to the examples α and β, when the
subject term is a pronoun or a variable, it is not able to convey
any information about the entity which the sentence in question
refers to. In such cases, the whole task of carrying information is
performed by the predicate term.

To simplify the matter, let us consider such a simple sentence
as ‘he is a liar’, called atomic by logicians. An atomic sentence is
one that consists solely of a predicate (as ‘is a liar’) accompanied
by the appropriate number of terms, i.e., individual expressions,
either constants or variables; in a natural language the role of
variables may be played by pronouns (e.g., ‘he’). Accompanying
expressions are called arguments of the predicate in question. The
appropriate number of arguments depends on the meaning of the

4 See, e.g., Kneale and Kneale [1962], p. 65.
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predicate accompanied by them. The meanings of ‘... is a liar’,
‘....is big’, ‘... walks’, etc., hint at one entity to be predicated of,
hence predicates of this kind are called one-place, or one-argument,
or unary predicates.

The class of two-place (binary) predicates can be exemplified
by expressions like

‘... is the father of ...’,
‘... is a friend of ...’,
‘... is bigger than ...’,
‘... dances with ...’,
‘... precedes ...’;

while the expression

‘... lies between ... and ...’

is an example of a three-place (ternary) predicate. Theoretically,
the number of places (as marked by blanks in our examples) is
unlimited; practically, it conforms to the needs of communication
and capacities of our minds.

It should be noted that the triples of dots used above as blanks,
to indicate the number of argument places, perform the same role
which is characteristic of variables; the latter also mark free places
to be filled in. If one prefers the blanks technique, then in the
case when the same object is to be referred to more than once,
the place for the expression referring to it should be marked with
identical blanks, say a dash ‘−’ while blanks for other arguments
should have a different shape. Then one would put ‘... precedes −’
to express the same as the expression ‘x precedes y’ does, while ‘...
precedes ...’ would correspond to ‘x precedes x’. Because of the
practical inconvenience of blanks technique, we use rather letters of
various shapes, called variables. However, the analogy with blanks
should be remembered to properly understand the use of letters as
variables; in logic we use letter arguments also for other purposes,
hence seeing variables as blanks helps to avoid misunderstandings.

1.4. The discussion concerning variables as blanks was to shed
light on the nature of predicates, and their partition according to
number of arguments. Now it is in order to discuss the functioning
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of arguments. There are two methods to fill a blank with an ex-
pression referring to an object; if all blanks are filled, the predicate
becomes a sentence.

One of the methods consists in using a proper name. Let the
place marked with ‘x’ in ‘x is a liar’ (or, equivalently, ‘he is a liar’)
be filled with the proper name ‘Epimenides’ to result in the sen-
tence ‘Epimenides is a liar’. In this context we can see the double
role of pronouns. They may be used either in the function of vari-
ables or blanks, as shown in the examples above, or as substitutes
for proper names. If in the presence of Epimenides one hints at
him and says ‘he is a liar’, then ‘he’ means ‘Epimenides’. It can be
said that such a procedure transforms the pronoun (or, variable)
‘he’ into a proper name which is made out of this pronoun and
that situation which involves the gesture of hinting and the object
hinted at.

There is an English verb which fittingly describes what is going
on in a case like that of referring to Epimenides through ‘he’. It
is the word ‘to bind’. In the hinting procedure the expression ‘he’
becomes bound to a definite person, say, that of Epimenides. Due
to the binding, ‘he’ changes its linguistic function, it is no longer a
variable, in spite of preserving the same physical shape. The same
holds when a letter, say ‘x’, is used as a variable. This can be
better seen in a generalized form of binding which is the following.

Let us consider the view of a pessimist to the effect that ‘ev-
erybody is a liar’, or (equivalently) ‘all people are liars’. In a
half-symbolic language it can be stated as follows:

δ: for any x holds: x is a liar.

Now ‘x’ has a different meaning than inside the predicate ‘x is a
liar’. In δ, ‘x’ refers to any entity, i.e., to whatever in the world (in
accordance with Shakespeare’s phrase in β, in 1.2), while inside the
predicate in question it has no reference at all, lacking any meaning
in the same way as an empty space. Hence the phrase ‘for any x
holds’ (or, shorter, ‘for any x’) performs the role of binding the
variable ‘x’, i.e., of transforming it into a symbol which refers to
something. To distinguish these two roles, that of a blank and
that of a symbol having reference, logicians decided to employ the
terms a free variable or real variable, and a bound variable or
apparent variable, respectively.
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The adjectives ‘bound’ and ‘free’ are currently used nowadays,
while the other pair is going out of use. However, the old-fashioned
terms are desirably suggestive. The phrase ‘real variable’ is to
remind us that only non-bound symbols, i.e., those functioning
as blanks, are genuine variables, while binding deprives them of
that function, so that they occur as variables only apparently, on
account of having been left in the same shape as before binding.5

There is another way of binding a variable, viz. with the phrase
for some ..., or (equivalently) there is ... such that (i.e.., satisfying
what follows; instead of ‘there is’ one may say ‘there exists’ or
‘exists’). With this phrase we obtain sentences like that:

ζ: There is x such that: x is a liar.

If our universe (‘whatever in the world’) is defined as the set of
all people, that is, it does not involve apes, angels, etc., then ζ

simply means: ‘some people are liars’. The use of the plural in
this translation is only for stylistic reasons, as the same can be
said with the sentence: ‘at least one man is a liar’ (this phrasing
should be added to those listed above, as being another stylistic
variant).

The phrases used in δ and in ζ (including their synonyms),
apart from their common task of binding variables, have another
feature in common. In a vague but unquestionable way they deal
with some quantities, namely numbers of objects. For any means
‘as many entities as are in the universe in question’, while for
some means ‘not less than one’. Even if not very precise, they
hint at certain quantities, and this is why these phrases and their
symbolic counterparts in formulas have been called quantifiers. It
has been shown in the above discussion how quantifiers interplay
with predicates in forming sentences. First, variables are added
to predicates as their arguments to result in the structure of a

5 David Hilbert used different letter forms to distinguish these kinds of sym-
bols: the lower-case letters from the beginning of alphabet for free variables,
and those from the end for bound variables. This recommendable precision has
not been followed by other authors, who regarded that the context is sufficient
to prevent ambiguity. Common practice prevails, and therefore I do not follow
Hilbert’s way here, but it is worth remembering that through this simplification
a useful notational device is lost.
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sentential formula (called also ‘propositional formula’, or ‘open
sentence’), next come quantifiers to form a full sentence, which, if
we need to clearly distinguish it from a formula, is called a closed
sentence.

Quantifiers belong to the category called variable-binding op-
erators. There may be other quantifiers besides the two discussed
above, for instance ‘there is exactly one’, ‘there are not less than
two’, ‘there are infinitely many’ (for various kinds of infinity), and
so on.6 However, in its standard version logic is content with two
variable-binding operators which form sentences, namely the uni-
versal quantifier, to which a variable owes its referring to the whole
universe, and the existential quantifier — that to which a variable
owes its referring to at least one entity in the universe.7

The occurrence of these two categories, predicates and quan-
tifiers, accounts for the fact that there are two equivalent names
for modern logic, viz., predicate logic and quantification logic. In
this essay, the term ‘predicate logic’, or ‘the predicate calculus’,
is preferred as one that directs our attention to some comparisons
between modern and traditional logic, the latter being seen as a
logic of names.

2. Quantification rules, interpretation, formal systems

2.1. The question of how to use a word or a symbol amounts to the
question of its meaning, while meaning is what is being brought in
by a definition. This general comment is in order at the start of
the present section, for it leads to a moral that is both logical and
rhetorical. The moral is addressed in particular to those who in the
name of scientific rigour are forever demanding ‘precise’ definitions,
meaning by this statements in the lexicographical form ‘A means
so-and-so’. Such people used to react with a contemptuous ‘I do
not understand’ when a speaker was unable to recite such an ‘exact’

6 More on this subject in Logic [1981], “Quantifiers” by S. Krajewski.
7 Besides quantifiers, there are variable-binding operators which play another

syntactic role: when binding a variable, they transform a predicate not into a
sentence (as the quantifiers do) but into a name. The latter are important from
the rhetorical angle as helping to make logic closer to every-day arguments,
hence special attention is paid to them later (Subsec. 3.4).



2. Quantification rules, interpretation, formal systems 121

definition. However, many important notions, e.g., those occurring

in the axioms of a theory, cannot be so defined (unless one commits

an infinite regress). In such cases, an efficient method of defining

consists in showing words in use, and this practice should also

be followed in everyday arguments and discusions. A convenient

term for this kind of definition is implicit definitions. Logic and

mathematics supply us with paradigms of that procedure, and the

case of quantifiers is in this sense paradigmatic.

The use of a quantifier consists in either adding it to a for-

mula or omitting it in the course of inference. If this is done in a

truth-preserving way, that is to say, a true formula remains true

after having been so transformed, then the inference in question is

logically valid. The listing of truth-preserving uses of a quantifier

amounts to a definition explaining its meaning; such a list can be

regarded as a concise introduction to predicate logic. When read-

ing a classical text consisting of proofs, say Euclid, one clearly sees

that such operations were ubiquituous in the practice of reasoning,

even if not codified in any logical theory available at the time in

question. Such codification was first accomplished in contempo-

rary logic.

Before stating the rules of using quantifiers, let me introduce

a convenient notation.8 The variety of phrases used for wording

the universal quantifier in a natural language will be represented

by the symbol ‘∀’, followed by the letter to indicate the variable

(within the succeeding formula) being bound by this quantifier.

Let Φ(x) be any formula containing ‘x’.9 The universal quantifier

forms a formula like this:

∀xΦ(x)

8 There are other notations for quantifiers (see Logic [1981]); the one chosen
for present purposes has the merit of being suggestive inasmuch as it depicts
the universal and the existential quantifiers as stylized abbreviations for ‘All’
and ‘Exists’, respectively.
9 As usual in mathematical practice, the letters from the middle of the Greek

alphabet will be used to denote any formula whatever, without hinting at its
content and structure; the only relevant information is to the effect that the for-
mula includes the variable being bound by the quantifier prefixing that formula.
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Analogously, various ways of expressing that an object is such-
and-such, will be unified with introducing the symbol of existential
quantifier which forms the following formula:

∃xΦ(x)

For each quantifier there are rules on introducing it into a formula
and eliminating it from a formula. In the rules there occur symbols
acting as proper names of objects satisfying the formula in ques-
tion. These will be, so to say, dummy names, inasmuch as we do
not deal with a concrete domain from which definite things might
be picked up, but rather with a schematic representation of any
possible domain. The symbols which are to function as schematic,
or indefinite, proper names are lower-case letters beginning the
alphabet, viz., a, b, c, etc.

2.2. We eliminate the universal quantifier when we transform a
universal proposition into a singular one, that is into a proposition
referring to one from among the instances of the universal formula.
This means that together with dropping the quantifier we replace
the bound variable by the proper name of an entity satisfying the
formula in question. The corresponding transformation rule runs
as follows:

[EU] from ∀xΦ(x) infer Φ(a),

where a, as explained above, is the name of an arbitrary object
satisfying the formula Φ. Let the inference be illustrated by taking
‘x = x’ for ‘Φ(x)’; then from ‘∀x(x = x)’ there follows ‘a = a’. If one
takes into account a definite domain, say that of natural numbers,
then the above universal identity results in ‘1=1’, ‘2=2’, etc. The
abbreviation which is to function as the label of this rule stands
for Elimination of the Universal quantifier.

The next rule to be considered is that of Introduction of the
Universal quantifier. If a formula is satisfied by every entity in the
domain in question as is, e.g., ‘x = x’ in the domain of all things,
then it is allowed to be transformed into a universal proposition,
that is to be prefixed by the universal quantifier. The assertion
of its being so universally satisfied is expressed by taking it as a
premise of inference. With this comment in view, the rule is to be
stated as follows:
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[IU] from Φ(x) infer ∀xΦ(x).

Analogical operations hold for the other quantifier. Elimina-
tion of the Existential quantifier means, as in EU, dropping the
quantifier and replacing the respective variable by a proper name,
but with the proviso [p] that the same name was not earlier in-
troduced with eliminating the existential quantifier in another for-
mula. Should one ignore this restriction, then a false proposi-
tion might result from applying this rule, e.g., to the formulas
‘∃x(x is a liar)’ and ‘∃x(x is a saint)’ after replacing ‘x’ by the same
name in both formulas.

[EE] from ∃xΦ(x) infer Φ(a), provided [p].

The last rule to be listed sheds light upon what one calls the
existential import of names as discussed earlier (Chapter Four, Sec.
2) and in this Chapter (Subsec. 3.4). It is the rule of Introduction
of the Existential quantifier that runs as follows:

[IE] from Φ(a) infer ∃xΦ(x).

2.3. The statement of rules given above is most general, covering
all possible structures of the formulas prefixed with quantifiers.
The Greek letter Φ(x) represents any formula whatever, if only
that formula contains the free variable ‘x’. It may be the simplest
sentential expression involving a one-place predicate, as ‘Px’, or
one with a more-place predicate, as ‘Rxy’, or else an expression
with more predicates combined by connectives (i.e., ‘and’, ‘or’,
‘if...then’, etc., e.g., ‘∀x(Px and Ryz)’), as well expressions contain-
ing more quantifiers (either before the formula or inside it), as, e.g.,
‘∀x∃y(Pxy and ∀zQz)’; another way of making a structure more in-
volved depends on denying (i.e., prefixing with a symbol meaning
‘it is not the case that’) either the whole formula or some of its
components. This way of representing arbitrary formulas ensures
the desirable generality of the inference rules presented above.

As a rule, the structure of a formula is determined by the in-
terplay of word order and punctuation signs; only in the so-called
Polish notation, devised by Jan  Lukasiewicz, does the syntactic
structure depend on word order alone, but this theoretical merit is
achieved at the cost of perspicuity. Hence, in practice, we benefit
from both means of structuring expressions, using parentheses as
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the punctuation signs (no other punctuation devices are needed,
since parentheses prove sufficient to define the scope of the symbols
involved).

In particular, parentheses hint at the scope of a quantifier, and
so tell us which variables are bound by the quantifier in question.
For instance, the two following conditionals have different mean-
ings because of structural differences resulting from the scope of
the quantifier:

[1] ∀xPx→ Qx,
[2] ∀x(Px→ Qx).

In [1] only the antecedent occurs in the scope of the quantifier,
while in [2], as marked by the parentheses, the scope extends to
the end of the formula.

2.4. At last, the very notion of a formula should be defined. This
Subsection is to deal with the concept of a formula, with inter-
preting formulas by reference to the universe of discourse, and
with distinguishing between formal and interpreted languages.

The concept of a sentential formula of a definite language, in
short, a formula, is an expansion of the concept of a sentence; in
logic, the latter term usually stands for an expression which has
the grammatical form of a sentence, and involves no free variables.
Every sentence is a sentential formula, but an expression with free
variables is no sentence; it can be transformed into a sentence
either through binding all variables or through replacing all free
variables by proper names.

More systematically, the concept of formula is defined as fol-
lows. We start from defining the set of atomic formulas. For this
purpose, we must have the list of predicates (let them be symbol-
ized by some upper-case letters) as well as the list of individual
variables and names (i.e., proper names) in the language in ques-
tion. The elements of the latter category, comprising symbols for
individuals, are briefly called terms. Atomic formulas are obtained
through juxtaposing predicates and terms in the following order:
first a predicate, then as many terms as result from that kind of
predicate: one term follows a one-place predicate (e.g., Pa, P1x,
Qy), a pair of terms — a two-place predicate, i.e., referring to a
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two-place relation (Rab, Rax, Sxy), a triple — a three-place pred-
icate, i.e., referring to a three-place relation (e.g., R1xyz, as in ‘x
lies between y and z), and so on; often the terms, as arguments of
the predicate in question, are put in parentheses and separated by
commas, e.g., R1(x, y, z), but no ambiguity arises if one abandons
such punctuation marks.

Once having obtained the set of atomic formulas, we define the
set of compound ones, the composition being of two kinds. One
of them consists in prefixing a formula (either atomic or earlier
obtained from atomic ones) with a quantifier, while the other in-
volves combining earlier existing formulas by means of sentential
connectives, such as ‘and’, ‘or’, ‘if...then’, the latter set including
also symbols which may precede formulas, such as a negation sign
(to be read ‘it is not the case that’). The number of such connec-
tives varies depending on certain linguistic conventions; we are not
bound to make decisions now in this matter, it is enough to note
that a precise definition of a formula of a given language takes into
account all such symbols accepted for the system in question.

Having thus settled the syntactic question of producing atomic
formulas from predicates and terms, and producing more com-
pound formulas from less compound ones, we can state a crucial
semantic problem: what do such formulas refer to? For exam-
ple, what is the formula ‘∀x(x = x)’ about? The answer sheds
light on the turn brought about by modern logic in our think-
ing about language. Both in natural languages and in traditional
logic, a proposition possesses a meaning without any reference to
the whole domain of thought being presupposed in the discourse in
question. In modern logic, though, a formula does not receive any
interpretation until one defines the set of objects to be referred to
by individual variables. Such a set is called the universe of dis-
course or, shorter, the universe; it is said to provide the language
with interpretation. Without interpretation a language is only
a formal system, that is a set of rules concerning formation and
transformations of certain strings of symbols which do not denote
anything.

Such a separation between syntactic and semantic components
of a language has far-reaching consequences. It makes it possible
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for a computer to effectively manipulate linguistic symbols with-
out any need of simulating their understanding; after these ma-
nipulations are produced it is up to a human being to give them
meaning. And, once having understood the nature of a computer,
we are better able to make illuminating comparisons between ma-
chines and organisms, especially human bodies as producing texts
and dialogues.

The means for producing formal systems when combined with
the concept of interpretation enable us to introduce the concept
of a formalized system, or a formalized theory. Imagine a system
in which theorems are proved in such way that each inference step
is justified by formal inference rules, i.e., rules which take into ac-
count only the physical shape of formulas. Imagine that, at the
same time, the system is given an interpretation, hence its terms
refer to objects in a definite domain. For instance, the variables
of Boolean algebra constructed as a formal system become inter-
preted by assigning to them objects which belong to the universe
of classes, and the operation symbols are interpreted as operations
on classes; then we have to do with a formalized theory, i.e., one
sharing the inferential rigour with formal theories and at the same
time being intepreted. Owing to this combination, a formalized
theory is manageable both by humans and by computers, and at
the same time it has a meaning and importance for humans. This
is exactly what Leibniz dreamt of, with the limitation that there
are theories, as important as, say, arithmetic, in which it is not
possible to prove all their truths in such a purely mechanical way;
thus their formalization can be only partial.10 Nevertheless, for-
malization remains a tool which essentially contributes to the use
of computers as devices assisting human intelligence.

3. Predicate logic compared with natural logic

3.1. The presentation of symbolic logic in this and in the preced-
ing chapters provides us with sufficient material to introduce the

10 This famous limitative result is due to Kurt Gödel (1906–1978) (Gödel
[1931]). More information on this and other limitative results of modern logic
can be found in Logic [1981], articles by S. Krajewski: ‘Completeness’, ‘Consis-
tency’, ‘Decidability’, ‘Recursive functions’ ‘Truth’.
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concept of natural logic. Its nearest conceptual environment on

the side of logic itself is formed by the notion of symbolic logic, es-

pecially predicate logic, and that of objectual reasoning as opposed

to symbolic reasoning. On the other hand, this concept is closely

related to that of cognitive rhetoric as a theory founded on logic.11

The English term logic means not only the science of correct

reasoning, defining, etc., but also a reasonable thinking, a good

sense. Let the term theoretical logic be applied to the former,

while the latter, being a quality or a conduct of mind, deserves

the name of natural logic. In fact, there is a multitude of natural

logics, as great as that of various natural languages, or even as

that of human individuals; but even if there are so many of them,

they have much in common, sufficiently much to form a vast field

to be called ‘natural logic’ in the singular.

The field so called has to be subjected to some laws which,

being concerned with behaviour, can be stated as certain rules.

There then arises the question of how such rules of natural logic

are related to the rules of theoretical logic, especially its standard

symbolic version known as predicate logic. Are these sets of rules

identical, or disjunct, or else overlapping? May natural logic profit

from relations with theoretical logic, and vice versa?

To answer these questions, it should first be realized that there

are two component parts of natural logic, a biological constituent

and a cultural constituent, the latter being mainly linguistic.12

Owing to the biological constituent, each of us is capable of ob-
jectual (material) inferences. That is to say that in the reasoning

about an object one may come to the true conclusion without ver-

balizing either the premises or the conclusion. The reasoning con-

sists then in a sequence of mental transformations of the object in

question. It can be nicely shown for some geometrical objects, as

11 The concepts of objectual and symbolic reasoning are first introduced in
Chapter Two, Subsection 3.1, and are then discussed in the context of gener-
alization procedure in Chapter Seven, Subsec. 3.2. The definition of cognitive
rhetoric is found in Chapter One, Section 1.3 in fine.
12 The biological constituent of natural logic is discussed in Chapter Seven,
Subsec. 2.2, in relation to von Neumann’s ideas.
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did I. Kant in the example of the proof that the sum of the angles
in any triangle equals two right angles.13

Once an objectual inference is verbalized as a sequence of sen-
tences, it can be examined to search for logical rules to justify
particular steps in that mental processing of the object. As far
as mathematical reasonings are concerned, predicate logic proves
sufficient to account for their validity. This means that, in mathe-
matical domains, natural logic, as an innate skill at objectual rea-
soning, can handle a similar range of problems as that for which
symbolic logic in its predicate version has been suited.

Certainly, in a case like that scrutinized by Kant, i.e., belonging
to geometry, the biological constituent of natural logic is essential,
because the intuition of space (to use Kant’s category) is apt to
guide not only human but also animal reasoning. On the other
hand, we should not disregard the linguistic constituent such as
the geometrical terminology; without it, the problem of the sum
of the triangle angles could not have been raised at all. However,
the linguistic constituent in geometrical inferences may lack logical
terminology; it helps, but one may do without it.14

In this sense, the logic of reasoning like that mentioned above
has been called natural — as one marking people from their birth,
or acquired by them spontaneously without any effort to master it,
without any study of logical theories. The question raised in the
title of this Section is concerned with the natural logic so conceived.
When it comes to its comparison with predicate logic, there comes
the question of their relation to each other to be tackled in what
follows.

3.2. There are two methods of extending predicate logic beyond
that set of means which involves the categories of expressions and
inference rules introduced so far. One of these methods consists
in adding new axioms or new rules which are not derivable from

13 This example is comprehensively discussed in Chapter Seven, Subsections
3.2, 3.3, 4.1.
14 This observation is confined to reasonings concerning individual mathemat-
ical objects. When a reasoning is concerned with a whole mathematical theory,
e.g., when its consistency is examined, then theoretical logic is necessary ex def-
initione, as a theory dealing with cognitive values of other deductive theories.
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the existing ones; the other consists in defining new categories of
expressions, with corresponding axioms or rules, with the help of
already existing means. The latter does not increase the deductive
power of predicate logic but makes it much more operative. Both
methods deserve a careful study from the rhetorical point of view
to confront the inferential means of predicate logic and those which
people owe to their natural logic.

The first and most usual extension consists in adding axioms
which allow new deductions, and at the same define the symbol of
identity ‘=’ as a new logical constant, the binary predicate added
to the truth-functional connectives and the quantifiers.

It can be defined either by appropriate rules or by a set of ax-
ioms. Since the latter is an instructive example of what is called
implicit definition (to be discussed later), it is advisable to for-
mulate it as a set of axioms. It consists of two axioms from which
other propositions characterizing identity can be deduced. The
axioms are as follows.

x = x reflexivity;
(x = y)→ (A(x)→ A(y)) extensionality.

The terms ‘reflexivity’ and ‘extensionality’ are names of properties
defined by the respective formulas. Here are the other properties
characteristic of the relation of identity, derivable from the above
axioms.

(x = y)→ (y = x) symmetry;
((x = y) ∧ (y = z))→ (x = z) transitivity.

The identity theory added to the predicate calculus makes it
possible to introduce new individual names. The method consists
in forming a name out of a predicate with the help of the quan-
tifiers and the identity symbol. All propositions which can be
expressed in this new form, i.e., involving names, are also capable
of being stated in the old form, i.e., with the use of predicates
alone. Although this extension does not advance the deductive
power of predicate calculus, it is of utmost importance, because it
enables the introduction of function symbols into the language of
mathematics and thus ensures maximum efficiency in computing
(see Subsec. 3.4 and 3.5 below).
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Obviously, the relation of identity or, as it may also be called,
equality, is not alien to natural logic. However, at the linguistic
level of this logic the symbol ‘=’ does not have an exact counterpart
either in English or in similar languages. Expressions such as ‘the
same’, ‘identical with’, etc., are not so convenient, so operative,
in the syntactic aspect, while the verb ‘is’, which syntactically is
most similar to ‘=’, is burdened with an ambiguity; sometimes it
means the same as ‘=’, for instance in the context ‘two and two is
four’, but is different in the sentence ‘there is an even number’; in
still other contexts ‘is’ should be interpreted as a counterpart of
the inclusion sign of the theory of classes. The moral to this com-
parison is that we deal here with a case in which theoretical logic
helps natural logic in clearing up an ambiguity, and so contributes
to its enhancement.

3.3. Predicate logic can be developed without the theory of iden-
tity. However, there would be no point in such abstention since
the predicate ‘=’ is necessary for practical reasons in the language
of mathematics, and there are no objections to be raised against
it from a philosophical point of view. This is why the theory of
identity is usually seen as an integral part of predicate logic.

There is another extension to increase the deductive power of
predicate logic, one being neither so necesssary nor so undisputed,
yet useful practically and interesting philosophically. It is the pred-
icate calculus of second order or, shortly, second-order logic, from
which the theory discussed so far is distinguished by the name of
first-order logic.

The vocabulary of that first-order calculus, let it be recalled,
contains, apart from logical constants, individual variables (possi-
bly, individual constants, too) and predicates. The status of these
predicates, symbolized in the foregoing exposition by capital let-
ters, as ‘P’, ‘Q’, etc., was not discussed as yet. The present context
gives us an opportunity to explain that such letters should be in-
terpreted as predicate constants despite their being single letters,
and not full-fledged expressions from a concrete vocabulary, say
English. If we use letters in this role, it is for the sake of conve-
nience; otherwise we would be bound to decide to which domain
the predicate calculus is to be applied (and so to use predicates
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concerning the chosen domain) instead of drawing attention to its
universal applicability. Hence, such a letter functions as a pred-
icate supposed to have a definite meaning which, however, is ir-
relevant to the validity of reasonings (being our sole concern in
developing the calculus), and is therefore disregarded by us.

In the second-order calculus, when we use single letters for the
predicate category, we assign them a different role, namely that
of predicate variables; let Greek capital letters be such variables.
Consequently, we need predicates of a higher order to be predi-
cated of such variables, that is to say, we need predicates to make
sentential formulas out of such variables as their arguments. The
appearance of that second level explains why the new calculus is
called second-order logic. The process of adding new levels can be
continued to obtain next orders of logic.

The addition of the second order of predicates has far-reaching
consequences both in the technical and in the philosophical di-
mension. Technical advantages for mathematics are thoroughly
discussed by Hilbert and Ackermann [1928] (a pioneering work in
this field), also by Barwise [1977]; e.g., in arithmetic the induc-
tion principle can be conveniently stated in second-order predicate
logic.

As for philosophy, there is, for example, the well-known second-
order formalization of the Leibnizian principle of the identity of
indiscernibles which runs as follows:

x = y ≡ ∀Φ(Φ(x) ≡ Φ(y)).

This formula opens a new prospect for the theory of identity, as it
defines the predicate ‘=’ in terms of equivalence and the general
quantifier alone, without additional axioms. Its philosophical mer-
its are obvious for those, say, who deal with the major problems
involved in Leibnizian philosophy. Yet despite such a significance,
it cannot be formalized in the first-order language. It should be
noted, however, that one takes advantage of the second-order lan-
guage provided that this language itself is not rejected by that
person for philosophical reasons. Objections raised by some critics
are connected with the rule of introducing the existential quantifier
(see above, Subsec. 2.2) which in second-order logic amounts to
acknowledging the existence of abstract entities, the point decid-
edly objected to by nominalists. However, whether we succeed in
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either refuting or ignoring such objections or not, we have to agree
that for some arguments, especially in philosophy, as in problems
related to the Leibnizian principle, the second-order logic is an
extremely useful device.

The possibility of extending logic towards ever higher orders,
i.e., categories of predicate variables, up to infinity, is an obvious
advantage of predicate logic over natural logic. Only the means
elaborated in symbolic logic are fit enough to render that infinite
array of categories resulting in what is called the predicate calculus
of order omega. It is akin to some versions of set theory which in
its history proved to surpass the abilities of natural logic. This
extreme extension of predicate logic should be of special use in
philosophical argument concerned with infinity, a realm so alien to
natural logic that it may get lost in those new surroundings.

On the other hand, even this far-reaching extension of logic to-
wards a treatment of abstract entities is not sufficient for some
simple arguments dealing with a category of abstract names. It
is the category of names of properties. The abstract entities of
higher-order logics are not those which incessantly appear in phi-
losophy, in humanities, and in every-day discourses, namely prop-
erties attributed to individuals, and also to other properties; the
latter deserve to be called properties of higher orders but this anal-
ogy does not throw a bridge between predicate logic and natural
logic. This discrepancy is worth a careful study, and for the present
purposes let the following example illustrate the problem.

Among the most famous philosophical arguments are those sta-
ted by Descartes in his Discours de la méthode. The sequence of
arguments begins with the statement CM (Cartesian Maxim) to
the effect:

(CM) The good sense is a thing evenly distributed among humans

(in the original le bon sense, and bona ratio in a Latin version).
Good sense is a property of individuals the possession of which

by every individual can be rendered in first-order logic in the fol-
lowing form;

(CM*) ∀xS(x),

with the universe of humans and the predicate ‘S’ to abbreviate
the phrase ‘... possesses good sense’. In second-order logic we can
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use a predicate having the predicate ‘S’ as its argument, but it
is not what we need. What we need is the phrase ‘good sense’
alone to be used as the grammatical subject in a premise, and
to denote that property of which another property is predicated,
namely that of being distributed, and again of the latter property,
namely distribution, it is predicated in the concise adverbial form
that the distribution is even. Thus, something like natural logic of
third-order is involved in such a short and simple statement, but it
is not a logic likely to be rendered in a third-order predicate logic.

Since (CM*) is expressible in natural logic, e.g., via English (as
a language whose logic is part of natural logic), we can ask about
logical relations holding between them. Obviously, the asterisked
maxim follows from the other but not vice versa. If good sense
is evenly distributed among humans, then each human is endowed
with it; but from the latter there does not follow the fact of even
distribution as stated in (CM). Neither inference nor the lack of
inference can be ascertained by the third-order predicate calculus
(as the only candidate, if any, to be authorized to settle these ques-
tions from the standpoint of theoretical logic). Since in predicate
logic there are no syntactic and semantic categories for properties,
properties of properties, and so on, there are no rules to guide and
control inferences involving these categories. Nevertheless, in En-
glish, in French, in Latin, etc., there must inhere such rules, if not
explicitly stated, then at least acting in an implicit way, so that we
can be certain of the validity of such inferences, as well as capable
of stating non sequitur, that is the lack of logical following, if it is
the case.

There is a means in predicate logic which makes it closer to
natural logic as dealing with names of properties. It is the ab-
straction operator, i.e., one which transforms a sentential formula
into a name of the class of those things which satisfy that formula;
it does not bridge the gap in question but deserves to be mentioned
in connexion with properties as abstract entities.15

15 The abstraction operator plays a significant role in applications of logic, also
to natural language, especially in its generalized form called lambda-operator.
In spite of this role, which is of consequence from the rhetorical point of view,
the discussion of this operator would exceed the limits of the present essay.
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The formal definition suited for one-argument predicates, where

the cap above the variable plays the role of the operator and square

brackets mark its scope, runs as follows:

∀z(z ∈ x̂[S(x)] ≡ S(z))

Let ‘S’ mean the same as above (‘... possesses good sense’).

This formula then means that any human individual z belongs to

the class of those possessing good sense if and only if he possesses

good sense. The constituents of this equivalence describe the same

state with the same words but in a different syntactical manner.

On the left side there occurs the name ‘class of ...’ which does

not appear on the other side. Obviously, whatever can be said in

one of these ways can also be said in the other, and in this sense

the extension of the language by adding the abstraction operator

is inessential. Yet, when combined with the rule of introducing

the existential quantifier, this definition results in the statement

about the existence of a set, as do statements of second-order logic,

e.g., the set of humans evenly endowed with good sense. Now we

can predicate a property about that set, e.g., that it is nonempty,

that it contains more than three members, etc. However, this does

not help natural logic as concerned with properties of individuals

(such as good sense), properties of such properties, etc. Classes

as well as properties are abstract entities, and they are related

to each other in an important way, yet they constitute different

categories of abstract objects, irreducible to one another. This

contrast emphasizes some features characteristic of natural logic

which are not reflected in theoretical logic.

These and other differences between the two logics require a

diligent study in order to be explained and, hopefully, removed.

Before such a study is undertaken, let it suffice to notice them

to become aware that for rhetorical purposes we must go beyond

Some basic information on this subject is found in Logic [1981], esp. in the
articles ‘Combinatory logic’ and ‘Lambda-operator’ by A. Grzegorczyk. A more
advanced exposition of the lambda-calculus is given in Feys and Fitch [1969] and
an instructive example of its linguistic applications is provided by Cresswell
[1977].
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theoretical logic, however sophisticated the array of ever-higher-
order logics is.16

3.4. The extensions which are discussed below are inessential,
as mentioned above, in the sense that when the extended logic is
applied to a theory, the set of theorems derivable in it (due to
that logic) is the same as in the case of applying non-extended
logic. This is not to mean, though, that the extension is of little
use. Some extensions are necessary for reasons of practicality, to
develop mathematics, as is, e.g., the introduction of function sym-
bols, while other ones improve the technical side of a theory and,
moreover, prove inspiring in a philosophical aspect.

The first to be discussed, both for systematic and for historical
reasons, are the theories of definite descriptions. Their beginnings
go back to Frege [1893] and Russell [1905] but for present pur-
poses it is enough to make use of the theory developed by Hilbert
and Bernays [1934-39].17 The theory devised by David Hilbert
(the main author) is in accordance with the inferential (i.e., rule-
oriented) approach adopted here in regard to quantifiers, and con-
stitutes a useful introduction to the later discussion of definition
(Chapter Eight, Subsec. 2.3 and 2.4). This is why it has been
selected for the present purposes.

∃xA(x)
∀x∀y(A(x) ∧A(y)→ x = y)

A(ιxA(x))
.

For purposes of the present discussion it is more convenient to
present the above rule in such a form as to indicate possible oc-
currences of free variables z1, . . . , zn:

(1) ∃xA(z1, . . . , zn, x)
(2) ∀x∀y(A(z1, . . . , zn, x) ∧A(z1, . . . , zn, y)→ x = y)

;
(3) A(ιxA(z1, . . . , zn, x)).

16 This reservation about the applicability of higher-order logics should be com-
bined with attempts to take as much as possible from them for understanding
and developing the logic of natural languages. Such an attempt is made by
Gallin [1975].
17 A review of various approaches as a historical introduction to the problem
is found in the article ‘Definite description’ by W. Marciszewski in Logic [1981].
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Formula (1) is called the existence condition, and formula (2), the
uniqueness condition.

This rule makes it possible to eliminate the existential quantifier
in those cases in which it has been proved that the object satisfying
the formula A exists and there is no other object satisfying A. Then
we are allowed to introduce the following definite description:

(4) ιxA(z1, . . . , zn, x),

and on the basis of (1) i (2) to obtain (3), and at the same time
to define the function

(5) f(z1, . . . , zn) = ιxA(z1, . . . , zn, x).

From (3) and (5) we can derive

(6) A(z1, . . . , zn, f(z1, . . . , zn)),

hence a formula in which the existential quantifier does not occur.
Thus the elimination of the existential quantifier is an operation

which consists in omitting the quantifier and replacing a variable
(formerly bound) by the individual constant defined by the given
description.

However, we hardly have a definite description at hand when
dropping the existential quantifier. Then we use a symbol, say ‘a’,
to stand for any object which the predicate in question refers to,
as prescribed by rule EE (cf. 2.2 above). It is not necessary for
truth-preserving that a be unique, we content ourselves with its
existence. Hence the rule which introduces ‘a’ to the language is
like the formerly stated rule for definite descriptions, but with the
difference that the uniqueness condition is omitted. An expression
introduced to a language by so liberalized a rule is called indefinite
description.

In those natural languages which possess articles, the definite
article is what forms a name being the counterpart of a definite
description, and the indefinite article forms what corresponds to an
indefinite description. In a language which lacks articles, as Latin,
the counterpart of indefinite description can be characterized in
terms of member supposition as discussed in Chapter Four (Subsec.
3.1).

At the same time, a name which satisfies only the existence con-
dition and is allowed to designate more than one object resembles
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the familiar general names of traditional logic; its semantic inter-
pretation is as that of the non-empty predicate of which it has been
formed. The treatment of general names as indefinite descriptions
settles the question of translating universal statements of tradi-
tional logic into class logic and predicate logic. The problem was
raised in the discussion of the theory of classes (Chapter Four,
Subsec. 2.1 and 2.2) and there two methods of class-theoretical
interpretation of the universal statements were presented, one of
them called strong interpretation, the other called weak interpre-
tation.18

Let us adopt the same distinction for universal statements ren-
dered in predicate logic (UA means universal statement, the sub-
scripts ‘w’ and ‘s’ hint at the weak and the strong interpretation,
respectively).

[UAw] ∀x(Ax→ Bx)
[UAs] ∀x(Ax→ Bx) ∧ ∃xAx.

The weak interpretation consists in treating UA as a statement on
non-existence. Thus, ‘Every Cretan is a liar’, means the same as
‘There are no Cretans who are not liars’. This statement would
remain true even if there were no Cretans at all, i.e., if the term
‘Cretan’ were empty.

That interpretation is confirmed by an analysis of UAw. Let
the above sentence be rendered as

[1] ∀x(Cx→ Lx),

where respective letters are abbreviations for the predicates ‘is
Cretan’ and ‘is a Liar’). Now, using the rule EU (Elimination of
Universal quantifier), we obtain:

[2] Ca→ La;

The next step consists in expressing the above conditional in the
following form:

[3] ¬(Ca ∧ ¬La);

18 See, e.g., Leśniewski [1992], vol. 1, p. 377. Illuminating historical data as
to existential import of universal propositions are found in Kneale and Kneale
[1962], and in Simons [1992]. The latter also comments on this problem in Franz
Brentano, recent free logics, and especially Leśniewski.
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after applying the IU rule (Introduction of Universal quantifier,
see 2.2 above), we again have a quantified expression, viz.:

[4] ∀x¬(Cx ∧ ¬Lx)

to the effect that it is true of everybody that he is not both a Cretan
and non-Liar, that is to say, that: there does not exist anybody
who is a Cretan and is not a liar. The last transformation is due to
some relation between the existential and the universal quantifier,
not discussed till now but being so intuitive that it can be seen
when comparing [4] and the following:

[5] ¬∃x(Cx ∧ ¬Lx).

The last formula demonstrates that from any universal affirmative
statement there follows a negative existential statement, i.e., a
statement about the non-existence of any object having such-and-
such properties (here the properties of being a Cretan and of not-
being a liar).

The relationship between predicate logic involving descriptions
and the natural logic of articles (and similar constructions) requires
a careful further study in two directions, the philosophical and the
linguistic. The first can be exemplified by the extensive and thor-
ough study by E. M. Barth [1974], the latter by a chapter in Hans
Reichenbach’s inspiring textbook [1948] trying to apply symbolic
logic to natural language. Some authors look for still other ways to
bring symbolic theoretical logic closer to natural languages. Peter
Simons, for example, stated a program of modern theoretical logic
in a way related to traditional logic and modernized according to
S. Leśniewski’s principles.19

3.5. The theory of descriptions throws a bridge between predicate
logic and the concept of function belonging to key concepts of

19 Simons [1992a] promises an introductory textbook to complete in some way
Leśniewski’s logic, which he sees as bridging the gap between traditional and
modern logic. Cf. Simons [1992] (the chapters concerning Leśniewski’s logic).
An illuminating introduction to Leśniewski is due to G. Küng in Logic [1981]
(see also Küng [1967]). As for Hilbert, whose approach is followed in this discus-
sion, he did not develop the description theory towards applications to natural
language, for he devised it as a step only in the proof-theoretical procedure of
eliminating quantifiers.
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mathematics.20 Here is one of those points in which the great
program of unifying mathematics and connecting it with logic,
initiated by Frege and Russell, has been successfully accomplished.

A function f is a rule which assigns to each member x of a set
X a unique element y from a set Y (not necessarily different from
X). The set X is called the domain of f, the element y assigned to
x is called the value of f at x. In other words, a function is a rule
for setting up a correspondence.

To express a correspondence we need a two-place predicate; ob-
viously, a description can be formed of a two-place predicate, pro-
vided it is, so to speak, a relational description. At the same time
the requirement of uniqueness ensures, in each case of correspon-
dence, the uniqueness of the value corresponding to each element.
To adduce some natural-language counterpart to the transition
from a predicate to a functional expression, let us consider the
predicate ‘is father of’ used in the context

(i) y is the Father of x, abbreviated as F (y, x).

Its functional counterpart is the name ‘the father of’ in the context

(ii) y = the father of x, abbreviated as y = f(x).

In this example (ii) is a rather deviant representative of natural
language since the equality symbol hardly belongs to the vocab-
ulary of ordinary English, which at this place would provide us
with the verb ‘is’. This deviation is deliberately committed for
two reasons, namely, to distinguish (i) from (ii), which otherwise
would take exactly the same form as (i), and to exemplify how a
natural language can be freed from some ambiguities with the help
of theoretical logic.

The general method of making functions from descriptions is
reported above (Subsec. 3.4) as the Hilbertian procedure of elim-
inating the quantifiers (see line (5)). Applying this method to the
present example, we obtain:

(iii) ιyF (y, x) = f(x),

where on the left side one puts the description formed of the pred-
icate formula (i), and on the right side, the name formed by the

20 This concept is also mentioned in Chapter Five, Subsec. 1.1 in connection
with the idea of the truth-function.
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function symbol ‘f ’. Since the left side denotes the unique y being
the father of an x, it can be replaced by the single symbol y, and
thus there holds: y = f(x).

Despite the said ambiguity of the verb ‘is’, being either part of
a predicate or a counterpart of the symbol ‘=’, natural logic avails
itself of the concept of function in the sense explained above, con-
nected with definite descriptions. This is due to the instinctive
method of identifying an individual by descriptions which can be
successively added as the need arises; e.g., to tell a John Smith
from other so named individuals, we ask about his father’s name,
which amounts to using a relational definite description; if it does
not suffice, we ask about a temporal (the birth time) and a spatial
(the birth place) relation, and so on. This leads to the conclu-
sion that in this respect the predicate calculus with functions and
natural logic remain in perfect agreement.

The theory of descriptions yields encouraging evidence that
predicate logic and natural logic have much in common, and each
of them can be better understood in the light of, or in contrast
to, the other. Moreover, owing to predicate logic, natural logic
becomes more conscious of its own laws and powers but also of
its limitations, for instance those in dealing with infinity. On the
other hand, natural logic challenges predicate logic by posing new
questions, such as that of dealing with orders of properties. To
handle all these problems is a task for a further inquiry which
should bring predicate logic closer to natural logic, in some points
as close as the old syllogistic was, and, on the other hand, make
natural logic still more sophisticated.


