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Abstract

This paper discusses lower bounds for proof length, especially as
measured by number of steps (inferences). We give the first publicly
known proof of Gödel’s claim that there is superrecursive (in fact,
unbounded) proof speedup of (i + 1)-st order arithmetic over i-th
order arithmetic, where arithmetic is formalized in Hilbert-style calculi
with + and · as function symbols or with the language of PRA. The
same results are established for any weakly schematic formalization of
higher-order logic; this allows all tautologies as axioms and allows all
generalizations of axioms as axioms.

Our first proof of Gödel’s claim is based on self-referential sen-
tences; we give a second proof that avoids the use of self-reference
based loosely on a method of Statman’s.

1 Introduction

This paper presents the first publicly known proof of a theorem of Gödel
on lengths of proofs; a sequel to this paper presents a proof of another of

∗Supported in part by NSF grants DMS-8902480 and DMS-9205181.
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Gödel’s claims on lengths of proofs. Gödel’s first theorem on lengths of proofs
appeared in his 1936 paper and states that there is no recursive function
bounding the proof speedup of (i + 1)-st order arithmetic over i-th order
arithmetic. Gödel’s second second theorem on lengths of proofs appears in a
recently discovered letter to von Neumann; this letter contains the claim that
a Turing machine which, given a formula and an integer n determines if the
formula has a proof in first-order logic of ≤ n symbols, must have runtime
> εn steps infinitely often, for some constant ε .

Our proofs of these two theorems of Gödel’s use self-reference and are
presumably similar to Gödel’s own proof methods. In this paper, we also give
a proof of the first theorem that avoids the use of self-reference, based partly
on methods of Statman. The proof of the second theorem is in the sequel [2]
to this paper.

We begin by giving the basic definitions and an overview of this paper.
The i-th order theory of arithmetic is denoted Zi−1 — so Z0 is first-order
Peano arithmetic, Z1 is second-order arithmetic, etc. Zi has as non-logical
symbols 0, S , +, · and optionally has function symbols for all primitive
recursive functions.2 The usual axioms of Zi consist of: (1) the axioms of
Robinson’s theory Q which define the basic properties of 0, S , + and · , and
(2) universal axioms defining the primitive recursive functions, if they are in
the language of Zi , and (3) induction for all formulas of Zi , and (4) if i > 0,
comprehension axioms

(∃X)(∀x)(x ∈ X ↔ φ(x))

for all formulas φ and variables x and X of orders j − 1 and j ≤ i ,
respectively. For the purposes of this paper, Zi must be formalized in a
Hilbert-style system, not in the Gentzen-style G1LC of Takeuti [16].3 If the
rules of inference for Zi are given by a finite set of schemata in the sense of
Parikh [11] then we have a schematic axiomatization for Zi . For a schematic
axiomatization, the valid rules of inference are specified by schemata into
which any formulas, terms and variables may be substituted to obtain
valid rules of inference, subject to syntactic conditions on variable names.

2We are using + and · as function symbols but our methods work equally well if they
are three-place relation symbols.

3The difficulty with G1LC is that it allows the use of substitution of formulas for
variables. This is logically equivalent to the use of the comprehension axiom; however, we
are currently unable to establish the analogue of Theorem 6 for G1LC .
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Schematic axioms are specified by schemata with no premises. However,
there are non-schematic ways to specify axioms as well: two notable examples
are that all (instances of) tautologies may be allowed as axioms and that
any universal quantification (generalization) of an axiom may be taken as
an axiom. If Zi is formalized in a Hilbert-style system with all rules of
inference given by a finite set of schemata except for axioms which may also
be given as tautologies and as obtained by arbitrary generalization, then we
say Zi is weakly schematic. All the methods of this paper apply to Zi as
either schematic or weakly schematic. See section 2.3 below for the complete
definitions of schematic and weakly schematic proof systems.

Because we allow weakly schematic proof systems, the effect is that the
work of this paper applies to Zi under almost any Hilbert-style system, for
instance, the proof systems found in textbooks by Enderton, Mendelsohn,
Kleene and Shoenfield.

Definition The symbol-length of a proof is the total number of occurrences
of symbols in the proof (including symbols occurring in the subscripts of
variables in, say, base two notation).

The step-length of a proof is equal to the total number of formulas in the
proof. The step-length is obviously also equal to the total number of uses of
axioms and inferences in the proof.

Gödel [6] stated the following theorem:

Theorem 1 For i ≥ 0 and h any recursive function, there is an infinite
family F of Π0

2 -formulas such that for any sentence φ ∈ F , φ is provable
in Zi and if k is the step-length of the shortest Zi+1 -proof of φ then the
shortest Zi -proof of φ has step-length greater than h(k).

In section 2.1 we shall prove the following “symbol-length” analogue of Gödel’s
theorem using a self-referential formula that says “This formula is not provable
in ≤ f(x) symbols”. This theorem can be found in Mostowski [10] and in
Ehrenfeucht-Mycielski [3].

Theorem 2 Let i ≥ 0 and f be any recursive function. Then there is an
infinite family F of Π0

1 -formulas such that

(1) for all φ ∈ F , Zi ` φ, and
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(2) for φ ∈ F , if k is the least integer such that Zi+1
k symbols φ then it is

not the case that Zi
f(k) symbols φ.

Although Theorem 2 is well-known, we include a proof here, partly since it is
a nice application of H. Friedman/Pudlák lower bounds on proof lengths of
partial consistency statements, and partly to introduce the general method for
proving Theorems 1 and 3. The Friedman/Pudlák results we exploit consist of
lower bounds on the symbol length of proofs of partial consistency statements
ConT (f(n)) which state that theory T has no proof with symbol-length
≤ f(n) of 0 = 1.

In section 2.2 we prove a strengthened version of Gödel’s theorem giving
an arbitrary (instead of recursive) speedup for Zi+1 over Zi for proof length
measured in steps:

Theorem 3 Let i ≥ 0. Then there is an infinite family F of Π0
1 -formulas

such that

(1) for all φ ∈ F , Zi ` φ, and

(2) there is a fixed k ∈ N such that for all φ ∈ F , Zi+1 k steps φ, and

(3) there is no fixed k ∈ Zi such that for all φ ∈ F , Zi k steps φ.

Theorem 3 obviously implies that Theorem 1 holds for an arbitrary function h .
The fact that Theorem 3 produces a family of Π0

1 -formulas instead of Π0
2 -

formulas is based on Matijasevič’s theorem. The proof in section 2.2 of
Theorem 3 uses a self-referential statement that says “This formula is not
provable in ≤ x steps”. However, unlike the symbol-length case of section 2.1,
we are unable to obtain any lower bounds on the step-length of partial
consistency statements. In order to prove Theorem 3 when Zi is formalized
as a weakly schematic system (especially when all tautologies are axioms
of Zi ), we must, in section 3, extend results of Parikh and Kraj́ıček bounding
the number of logical complexity of formulas in a proof in terms of the
step-length of the proof.

Statman [15] gave a similar unbounded proof-speedup for first-order
schematic theories with infinite models. In section 3, we rework his proof
dropping the restriction that the theory have infinite models, and allowing
weakly schematic theories, and also allowing higher-order logic. This provides
an alternative proof of Theorem 3 that avoids the use of self-reference.
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Although this latter proof is probably not what Gödel had in mind, it still
provides interesting insight into the structure of proofs.4

Our proofs of Theorem 3 give the first known proofs (except presumably to
Gödel) of Gödel’s theorem (Theorem 1) for so-called Hilbert-style axiomatiza-
tions of higher-order arithmetic where addition and multiplication are taken
to be function symbols. In the case where Zi has at most one unary function
symbol and has no nonunary function symbols (so addition and multiplication
are three-place relation symbols), Theorem 3 has already been proved for i = 0
by Parikh [11] and for i > 0 by Kraj́ıček [7]. Parikh’s proof used a precursor of
Theorem 6 below and Kreisel’s conjecture; Kraj́ıček used a sharpened version
of Parikh’s precusor of Theorem 6 and a diagonalization argument. The
methods of Kreisel-Wang [9], based on self-referential statements, can be easily
extended to prove the analogue of Theorem 3 for ε-calculus formalizations of
higher-order arithmetic. More discussion of prior work on this problem can
be found in [12].

I’d like to thank Jan Kraj́ıček for helpful suggestions and comments. In
addition, I thank Daniel Leivant for extensive discussions.

2 Proof speedup of Zi+1 over Zi

In section 2.1 we prove Theorem 2, which is the analogue of Gödel’s lengths of
proofs theorem with proof length measured by the number of symbols in the
proof. The development in section 2.1 is carried out by using lower bounds
of Pudlák and H. Friedman for the lengths of partial self-consistency proofs.
This yields a very satisfactory proof of Theorem 2. In section 2.2, Theorem 3
is proved, which concerns proof length measured by the number of steps. It is
more difficult to handle this case where proof length is measured by number
of steps and we do not know if the corresponding lower bounds to lengths of
partial consistency proofs hold for proof length measured by number of steps.
Instead, Theorem 3 is proved by using a self-referential formula directly. To
complete the proof of Theorem 3, we must obtain upper bounds on the logical
complexity of formulas in a proof in terms of the number of steps in the proof;
this is carried out for weakly schematic proof systems in section 2.3.

4Our best guess is that Gödel had in mind a proof which used both self-referential
statements and numeralwise representability of functions.
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Definition Let T be a theory and φ a formula. We write T k steps φ , or

sometimes just T k φ , to mean that there is a T -proof of φ of ≤ k steps.

We write T k symbols φ , or sometimes just T k φ , to mean that there is a
T -proof of φ of ≤ k symbols.

Definition For φ a formula or t a term, |φ| or |t| denotes the number of
symbols in φ or t . For P a proof or w the Gödel number of a proof, |P |
or |w| denotes the number of symbols in the proof. We also write |n| to
denote the length of the binary representation of an integer. (This creates two
definitions for |w| where w is a Gödel number; by efficient coding techniques
the definitions are polynomially related, and in any event, context will serve
to indicate which definition is intended.)

2.1 Symbol-Length Speedup

We shall henceforth let T denote an axiomatizable, consistent theory of
arithmetic with language containing + (plus) and · (times) as function
symbols. The language may also contain other function symbols such as
successor S and possibly symbols for primitive recursive functions. We shall
assume that T is strong enough to arithmetize metamathematics efficiently,
e.g., we assume that (an extension by definitions of) T contains one of the
bounded arithmetic theories S1

2 or I∆0+Ω1 (see Buss [1] and Wilkie-Paris [17]
for descriptions of these bounded arithmetics). For n ≥ 0, n denotes a closed
term with value n . Since + and · are functions symbols, we can ensure that
|n| is O(log n) by defining 2n to be (2·n) and defining 2n + 1 to be (2·n+1).

Since T is axiomatizable, it has an axiomatization for which the axioms
are recognizable in polynomial time on a multitape Turing machine. We fix
some such axiomatization for T . For example, T ’s axioms might be given by
a finite set of axiom schemata.

Definition ConT (x) is a first-order formula expressing the partial consis-
tency statement for T that there is no T -proof of 0 = 1 with symbol-length
≤ x :

¬∃w[w codes a T -proof of 0 = 1 of symbol-length ≤ x ].

Theorem 4 (Pudlák [13, 14], H. Friedman) Let T be a theory of arithmetic
as above. Then there is an ε > 0, such that, for all n > 0,

¬ T nε symbols ConT (n)
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Proof (Sketch) By Gödel’s diagonal lemma, there is a formula φ such that

T `
(
φ(x) ↔ (¬T x φ(x))

)
. (1)

Actually, the usual statement of Gödel’s diagonal lemma applies only to
sentences, but it is easily seen that the diagonal lemma applies also to formulas
with free variables x . Now φ(x) is of the form ¬(∃w)ψ(w, x) where ψ is a
∆b

1 -formula (and hence a Σb
1 -formula) which expresses the condition that

w is the Gödel number of a proof of the formula φ(x) of symbol-length ≤ x .
By Theorem 7.4 of Buss [1] or Theorem 6.4 of Wilkie-Paris [17] there is a
polynomial p(n) such that

T `
(
ψ(w, x) → T p(|w|) ψ(w, x)

)
;

the essential idea is that if ψ(w, x) is true, then T can prove ψ(w, x) by a
direct proof which is of polynomial size. (Note that if ψ(w, x) holds, then
|w| ≥ |φ(x)| > |x| ; thus the length bound p(|w|) does not need to depend
on |x| .) Since sequences are presumed to be efficiently coded in T , T also
proves that ψ(w, x) → |w| ≤ k · x for some constant k . Thus there is a
constant b > 0 such that

T `
(
¬φ(x) → T xb ¬φ(x)

)
. (2)

On the other hand, (1) implies

T `
(
¬φ(x) → T x φ(x)

)
. (3)

Combining (2) and (3) we get that

T ` ∀x
(
¬φ(x) → ¬ConT (xc)

)
(4)

for some constant c ∈ N . Take ε < 1/c . Let m > 0 and n = mc and suppose,
for sake of a contradiction, that

T nε

Con(n). (5)

Now, for all m ∈ N ,

T |m|O(1)

(m)c = mc (6)
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by Lemma 7.5 of [1] or Lemma 6.3 of [17]. Intuitively, (6) is proved by noting
that T can prove facts like S(m) = m + 1, m + r = m + r , and m · r = m · r
with polynomial size proofs using the axioms defining the symbols S , +
and · ; formally one establishes this first for S , then for + and then for · by
induction on the length of m .

From (6) it follows trivially that

T |m|O(1)

ConT ((m)c) ↔ ConT (mc). (7)

Thus, by (4), (5) and (7),

T mcε+|m|O(1)

φ(m).

For m sufficiently large, mcε + |m|O(1) ≤ m so that T m φ(m). But then T
also proves ¬φ(m) by the definition of φ , which contradicts the consistency
of T .

We have shown that for m sufficiently large, it is not that case that

T nε symbols Con(n) with n = mc for some m ∈ N . To establish this
for arbitrary n not of the form mc , we note that n ≤ (⌈

n1/c
⌉)c ≤ 2n

for n sufficiently large. From this and the fact that for n′ ≥ n ,

T |n′|O(1)

ConT (n′) → ConT (n), we get that ¬T nε′
ConT (n) for all suf-

ficiently large n and some constant ε′ ≤ ε . By taking ε′ smaller if necessary,
this holds also for all n > 1.
Q.E.D. Theorem 4

Theorem 4 can be used give exponential speedup between Zi+1 and Zi ; for
establishing arbitrary recursive speedup, we generalize the partial consistency
statement ConT as follows.

Definition A partial recursive function f is time constructible if and only if
there is a Turing machine Mf , such that, for all x ,

f(x) = y ⇔ Mf (x) halts in exactly y steps.

We define f(x) ≥ y to mean that Mf (x) does not halt in < y steps. Note that
f(x) ≥ y will hold whenever f(x) does not converge. By convention, every
time-constructible function f satisfies f(x) ≥ |x| ; the Turing machine Mf

will be explicitly constructed to read its entire input, which forces f(x) ≥ |x|
since x input in binary notation has length |x| .
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Obviously, every partial recursive function is dominated by a time-
constructible functions. Note that f(x) ≥ y is a recursive predicate and,
in fact, f(x) ≥ |y| is a polynomial time predicate of x and y .

Definition ConT (f(x)) is the Π0
1 -formula with free variable x expressing

¬∃m
((

T m symbols 0 = 1
)
∧ f(x) ≥ m

)
Theorem 4 can be generalized to partial consistency statements involving
f(x):

Theorem 5 Let T be a theory of arithmetic as above. Then there are constants
ε > 0 and c ∈ N so that, if f is a time constructible function, then for all
sufficiently large n,

¬T f(n)ε symbols ConT ((f(n))c).

When f(n) is undefined, T does not prove ConT (f(n)c) at all.

Here ConT ((f(n))c) should be interpreted as the formula ConT (g(n)) where
g is the time-constructible function g(x) = f(x)c . For many theories T , c
can be a small integer like 2 or 3 and ε can be any constant < 1.

Proof The proof of Theorem 5 is very similar to the proof of Theorem 4,
so we indicate only the major differences and leave the details to the reader.
First, let φ(x) now be the Gödel diagonal formula such that

T `
(
φ(x) ↔ ¬∃y

((
T y symbols φ(x)

)
∧ f(x) ≥ y

))
. (1 ′ )

Now, there is a polynomial p so that

T `
(
f(x) ≥ y → T p(|x| + y) symbolsf(x) ≥ y

)
. (8)

The polynomial p depends on f (or rather, on the Turing machine which
time-constructs f ); however, the degree of p is independent of f . Hence,
taking a ∈ N greater then the degree of p , we have that p(|x| + y) in (8) can
be replaced by (|x| + y)a for sufficiently large x, y ; i.e., there is a constant C
so that

T ` ∀x, y ≥ C
(
f(x) ≥ y → T (|x| + y)a symbolsf(x) ≥ y

)
. (9)
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Combining this with the reasoning from the previous proof shows that

T ` (∀x ≥ C)
(
¬φ(x) → T (f(x))b ¬φ(x)

)
(2 ′ )

for some constant b which, like a , is independent of f . Thus there is a
constant c ∈ N , independent of f , so that

T ` ∀x ≥ C (¬φ(x) → ¬ConT ((f(x)c))). (4 ′ )

On the other hand, we have, for some ε < 1 and for all sufficiently large n ,
that if

T f(n)ε

ConT ((f(n))c),

then T would prove φ(n) in ≤ f(n) symbols. As before, this is a contradic-
tion, since then also T ` ¬φ(n).
Q.E.D. Theorem 5

We are now ready to prove the analogue of Gödel’s theorem involving
symbol-length of proofs in place of step-length of proofs.

Theorem 2 Let i ≥ 0 and f be any recursive function. Then there is an
infinite family F of Π0

1 -formulas such that

(1) for all φ ∈ F , Zi ` φ, and

(2) for φ ∈ F , if k is the least integer such that Zi+1
k symbols φ then it is

not the case that Zi
f(k) symbols φ.

Proof Recall that Zi and Zi+1 may be taken to be either schematic theories
or weakly schematic theories (see section 3 for the full definitions). It
is easy to see that the schematic versions of these theories have at most
exponential speedup over the non-schematic versions; hence it will suffice to
prove Theorem 2 for the schematic versions of Zi and Zi+1 . This is fortunate
since the previous two theorems depended on T having a polynomial time
recognizable set of axioms.

Let c and ε be the constants from Theorem 5 that apply to the (schematic)
theory T = Zi . Without loss of generality, 1/ε is an integer and f(x) ≥ x for
all x and f is a time-constructible function. Let h be the time-constructible
function h(x) = (f(x))1/ε . Let F be the set of formulas

ConZi
((h(n))c)
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for n ≥ 1. We must prove three things to establish the theorem:

(1) For all n , Zi ` ConZi
((h(n))c).

For a fixed n ≥ 1, Zi can prove h(n) = h(n) by explicitly verifying the
execution of the Turing machine which time constructs h . Then Zi can
examine all of the finitely many Zi -proofs of ≤ h(n) symbols to verify
that none of them is a valid Zi -proof of 0 = 1.

(2) For all sufficiently large n , it is not the case that Zi
f(n) ConZi

((h(n))c).
This is immediate from Theorem 5. We may discard from F the
statements ConZi

((h(n))c) where n is not sufficiently large.

(3) For all n , Zi+1
O(log n) ConZi

((h(n))c).
Using a truth-definition for (i + 1)-st order formulas, Zi+1 can prove
the consistency of Zi , i.e., Zi+1 can prove (∀x)ConZi

(x). From this,
Zi+1 easily infers (∀x)ConZi

((h(x))c). Now |n| = O(log n), so by using

a ∀-instantiation inference, Zi+1
O(log n) ConZi

((h(n))c).

Theorem 2 follows immediately from (1), (2) and (3). Q.E.D.

2.2 Step-Length Speedup

We next prove Gödel’s theorem as originally stated with proof lengths
measured in terms of number of steps instead of number of symbols. Using
symbol-length for proofs was convenient since there are only a finite number
of proofs with a given symbol length and it is easy to enumerate all of them.
However, the situation is more difficult when using step-length since there may
well be an infinite number of proofs of a given step-length. This complicating
fact does provide one advantage however: we shall improve Gödel’s stated
theorem by obtaining an unbounded speedup for Zi+1 over Zi .

Since we can not bound the number of proofs of a given step-length, it
will be important for us to instead bound the logical complexity of formulas
occurring in a proof in terms of the step-length of the proof. For this, we
extend a construction of Parikh to apply to theories which are merely weakly
schematic.

Definition If φ is a formula, the logical depth, dp(φ), of φ is the maximum
depth of nesting of the logical connectives in φ . For φ atomic, dp(φ) is 0; for
φ of the form (Qx)ψ or ¬ψ , dp(φ) = dp(φ) + 1; and for φ = (ψ ¯ χ) with
¯ a binary connective, dp(ψ) is 1 + max{dp(ψ), dp(χ)} .
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The quantifier depth or q-depth of φ is denoted q-dp(φ) and is defined to
be the maximum depth of nesting of quantifiers in φ .

The quantifier block depth or qb-depth of ψ is denoted qb-dp(ψ) and is
defined to be the maximum depth of nesting of blocks of like quantifiers
in ψ . Boolean connectives do not contribute to qb-depth, and if φ is (Q~x)ψ
where (Q~x) denotes a block of quantifiers which either all existential or all
universal and where ψ does not start with a quantifier of the same type, then
qb-dp(φ) = 1 + qb-dp(ψ).

Theorem 6 Let T be a weakly schematic theory and suppose T k steps φ.

Then there is a T -proof P of φ with step-length ≤ k such that every formula
in P has quantifier-block depth ≤ qb-dp(φ) + O(k).

The constant implicit in the O(k) depends on the theory T , of course.
The proof of Theorem 6 is postponed to section 2.3; actually, we prove a
strengthening of this theorem there. By examining the proof of Theorem 6
it will be obvious that I∆0 + exp , and hence Zi , for i ≥ 0, can prove the
arithmetized version of this theorem — this will be important for our proof of
the following strengthened form of Gödel’s theorem:

Theorem 3 Let i ≥ 0. Then there is an infinite family F of Π0
1 -formulas

such that

(1) for all φ ∈ F , Zi ` φ, and

(2) there is a fixed k ∈ N such that for all φ ∈ F , Zi+1 k steps φ, and

(3) there is no fixed k ∈ Zi such that for all φ ∈ F , Zi k steps φ.

Proof Let i ≥ 0. Let φ(x) be the formula obtained by Gödel diagonalization
such that Z0 proves

φ(x) ↔
(
¬Zi x steps φ(x)

)
Let F = {φ(n) : n ≥ 0} . We must show three facts:

(1) For all n ≥ 0, it is not the case that Zi n φ(n).
This is immediate from the consistency of Zi , since, if Zi n φ(n), then
Zi proves this fact and thus Zi ` ¬φ(n).
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(2) For n ≥ 0, Zi ` φ(n).
To prove this, fix n ≥ 1 and reason informally in Zi . First, sup-
pose ¬φ(n); then Zi n φ(n). By Theorem 6 (which is formalizable
in Zi ), it follows that there is a Zi -proof of φ(n) in which every formula
has qb-depth ≤ d ·n for d some constant. Now Zi has a truth-definition
predicate Tri

d·n for formulas of qb-depth ≤ d · n (of necessity, the
qb-depth of Tri

d·n is > d · n). This truth predicate Tri
d·n(pψq, xi)

takes the Gödel number of a formula ψ with qb-depth ≤ d · n and an
element xi which is of order i + 1 and construes xi as encoding values
for all the variables appearing free in ψ , and gives the truth value of ψ
for these values. Thus validity of ψ can be expressed as

V alidi
d·n(pψq) ≡ ∀xiTri

d·n(pψq, xi).

Furthermore, as is usual for partial truth predicates, Zi can prove that
all axioms of Zi of qb-depth ≤ d · n are valid in the sense of Tri

d·n
and that the rules of inference preserve validity. Hence, Zi proves
that if Zi n φ(n), then V alidi

d·n(pφ(n)q). Furthermore, Zi proves that
V alidi

d·n(pφ(n)q) implies φ(n) holds (by induction on the complexity
of φ).

Thus, we have shown that Zi proves ¬φ(n) implies φ(n); i.e., Zi ` φ(n),
as desired.

(3) There is a k ≥ 0 such that, for all n ≥ 0,

Zi+1 k steps φ(n).

To establish this, it will suffice to show that Zi+1 ` (∀x)φ(x); since
from (∀x)φ(x) the formula φ(n) can be derived in a constant number
of inferences independent of n .

The argument that Zi+1 ` (∀x)φ(x) is like the argument for (2) above;
however, Theorem 6 is no longer necessary since Zi+1 can define a truth
predicate for all formulas of the language of Zi .

Q.E.D. Theorem 3

The proof of Theorem 3 was similar in spirit to the proof of Theorem 2;
however, one important difference is that the proof of Theorem 3 used a Gödel
sentence φ expressing its own unprovability in a bounded number of steps,
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whereas the proof of Theorem 2 used a partial consistency statement asserting
the unprovability of 0 = 1 in a bounded number of of symbols. It would be
interesting to know if Theorem 3 can also be proved with a partial consistency
statement. This leads to the following question which is quite interesting in
its own right. Let ConZi

(k steps) be the formula ¬Zi k steps 0 = 1:

Question Is it the case that, for all constants 0 < ε < 1,

Zi nε steps ConZi
(n steps)

holds for all sufficiently large n? More generally, what is the least step-length
of Zi -proofs of ConZi

(n steps)? Even, is there a constant k such that for
all n

Zi k steps ConZi
(n steps)?

This last question must have answer ‘No’ if Kreisel’s conjecture holds for the
particular formalization used for Zi ; however, it would be desirable to have
self-referential disproof of this (assuming it’s false, of course). By ‘Kreisel’s
conjecture’ we mean the statement that, for all formulas A(x), if there is a
fixed k such that for all n , Zi k steps A(n), then Zi ` ∀xA(x).5 The reason

that Kreisel’s conjecture implies the last question has answer ‘No’ is that
otherwise Zi would prove its own consistency.

On the other hand, we have the following example of a theory that does
not satisfy Kreisel’s conjecture and does not have o(n) step-length proofs of

its partial selfconsistency statements:6 Let P̂A be the first-order theory of
Peano arithmetic with the usual axioms plus all true statements of the form
m + n = m + n and m · n = m · n . If the formulas ConP̂A(n symbols) are
formulated in the form (∃~x)(p(n, ~x) = q(n, ~x)) with p and q polynomials,

then they have constant length P̂A-proofs for all integers n . Thus Kreisel’s
conjecture does not hold for P̂A , since otherwise P̂A would prove its own
consistency. On the other hand, choose a diagonal formula φ(x) so that

P̂A `
(
φ(x) ↔ ¬(P̂A x steps φ(x))

)
5Kreisel’s conjecture is usually stated with the term Sn(0) instead of n . See Parikh [11]

or Kreisel’s footnote on page 400 of [16] for more information on Kreisel’s conjecture.
6This example is a strengthening of a construction due to J. Kraj́ıček (private

communication).
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and let ¬φ(x) be equivalent to a formula of the form ∃~y(p(x, ~y) = q(x, ~y))

with p and q polynomials. By the definition of φ , P̂A proves

¬φ(x) → (P̂A x φ(x))

and, by the form of ¬φ , there is a constant ` such that P̂A proves

¬φ(x) → (P̂A ` ¬φ(x)).

So P̂A proves ConP̂A(x + `′ steps) → φ(x) for some constant `′ . Now if

P̂A could prove its partial selfconsistency statements with o(n) step-length

proofs, then it would follow that P̂A could prove each formula φ(m) in o(m)

many steps — which is a contradiction. The same reasoning shows that Ẑi

also can not prove its partial selfconsistency statements ConẐi
(n steps) in

o(n) steps.

The first question above is motivated by work of Pudlák [13, 14] where
O(nε) lower bounds are shown for the symbol-length of proofs in PA of
ConPA(n symbols). In analogy, we conjecture the answer to this question
is ‘No’ but current techniques do not appear to be adequate to show this.
Pudlák also shows nearly linear upper bounds on the symbol-length of these
proofs too. As pointed out by J. Kraj́ıček, these same methods also suffice to
show that Zi has proofs of step-length O(n) of the selfconsistency statements
ConZi

(n steps). To prove this, note that Zi can formalize Theorem 6 and
prove

¬ConZi
(x steps) → ¬ConIΣi

cx+c
(x steps)

for some constant c , where IΣi
cx+c means the theory Zi restricted to induction

on Σi
cx+c -formulas. Now, for m ≥ 0, Zi can give a partial truth definition for

Σi
m -formulas and prove that it satisfies the usual properties in O(m) lines.

Then Zi can prove ConIΣi
cn+c

(n steps), and hence ConZi
(n steps), in O(n)

steps.
One final observation, which Kraj́ıček has also pointed out to us, con-

cerns formalizations of Zi which have successor function S as the only
function symbol (allowing +, · , etc as relation symbols). In this case, if
Zi k ConZi

(n steps), then k ≥ d log log n for some constant d which depends
on the formalization of Zi . This is proved by using Theorem 3.1 of [7] which

implies that if Zi k ConZi
(n steps) then Zi

(log n)22O(k)

ConZi
(n steps) and

hence that Zi
(log n)22O(k)

ConZi
(n symbols). And the Pudlák-Friedman lower
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bound then implies that (log n)22O(k)
> nε for some ε > 0; from whence

k = Ω(log log n) follows.

Another open question is whether a “nonspeedup” result holds for Zi+1

over Zi . Namely, is there an infinite set {φj}j of consequences of Zi+1 with a
moderately growing function g , say g(j) = 2j , such that, if kj is the minimum
step-length of a Zi+1 -proof of φj , then the following hold: (1) kj ≥ g(|φj|)
and (2) Zi kj

φj also? The corresponding question using symbol-length is
also open.

2.3 Bounding Formula Complexity via Step-Length

It is entirely possible for a formula φ to have a proof P of step-length k ,
but with formulas in P having arbitrarily large logical complexity. There are
various reasons for this, most obviously, it may be that P has axioms, say
tautologies of the form A → (B → A), containing subformulas of arbitrarily
high logical complexity. We shall see below, however, that such high logical
complexity can be avoided by showing that whenever T k steps φ where T is

a weakly schematic theory then there is also a T -proof of φ in which every
formula has its logical complexity (qb-depth) bounded by the complexity of φ
plus O(k).

First, we define formally what schematic and weakly schematic theories
are. Parikh [11] was the first to introduce schematic theories.

Notation The language of i-th order logic contains variables xj of order
j + 1 ≤ i (often denoted just x without the superscript denoting the order),
constant symbols (we assume 0 is a constant symbol), function symbols (such
as S , +, ·), various relation symbols (including = and ∈), and logical
connectives consisting of Boolean connectives and quantifiers ∀xj and ∃xj .
Function symbols must take first-order arguments and produce first-order
values. Relation symbols other than = and ∈ take only first-order arguments.

We say an object is of type j if and only if it is of order j + 1; thus the
superscript in xj refers to the type of the variable.

To specify axioms and rules of inference schematically, we need metanota-
tion for the syntax of i-th order logic. Accordingly, there are

(i) metavariables αj of type j , which range over variables of type j ,
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(ii) term variables σ, τ, . . . which range over terms (of type 0), and

(iii) formula variables A(x1), B(x1, x2), . . . of various arities ranging over
formulas.

Metaterms are formed from variables, meta-variables, constants, function
symbols, and term variables. An atomic metaformula consists of either
a formula variable applied to metaterms or a predicate symbol applied
to metaterms. Metaformulas are formed from atomic metaformulas using
Boolean connectives and quantifiers; we frequently use capital Greek letters
Φ, Ψ, . . . to denote metaformulas.

A substitution S consists of a mapping from metavariables to metavari-
ables, from term variables to terms and from formula variables to formulas.
We write κS for the value that S maps κ to. A substitution S can be
extended to a mapping from metaterms and metaformulas to terms and
formulas. If Φ is a metaformula and S is a substitution, then the formula
ΦS is the result of replacing each metasymbol κ in Φ by κS . This is
readily defined for κ a metavariable or a term variable; for κ a formula
variable, κ = A(u1, . . . , uk), we define (A(s1, . . . , sk))S to be the formula
obtained by substituting the terms s1S, . . . , skS for all free occurrences of
the variables u1, . . . , uk in the formula κS (here, the si ’s are metaterms).
This last definition applies even if siS is not freely substitutable for ui in κS ;
however, it is possible to formulate weakly schematic systems to avoid the case
where the substitutions are not free (in fact, weakly schematic systems for
higher-order arithmetic will always have “side conditions” that explicitly rule
out the possibility of a substitution not being free). The variables u1, u2, . . .
may be any distinguished list of type 0 variables. See Farmer [5] for a more
comprehensive definition of metaformulas and substitutions.

Formally, a substitution S must be total, in that S assigns values to
all metasymbols; but obviously, the formula ΦS depends only the values
κS where κ is a metasymbol occurring in Φ. Thus it will be useful
to utilize partial substitutions. An even more general notion is that of
metasubstitutions: metasubstitutions are defined similarly to substitutions
except that a metasubstitution maps metavariables to metavariables and
variables, maps term variables to metaterms and maps formula variables to
metaformulas. If S is a metasubstitution and Φ is a metaformula, then ΦS
is defined in the obvious way.

The composition of two metasubstitutions, denoted S ◦ S ′ or just SS ′ , is
computed by applying first S and then S′ .
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Definition A theory T is schematic if and only if the following conditions
hold:

• proofs in T consist of sequences of formulas where each formula is
derived from earlier formulas by inference rules, and

• inference rules are given by a finite set of schemata

Φ1, . . . ,Φk/Ψ (R)

where Φ1, . . . , Φk, Ψ are metaformulas and R is a finite set of side
conditions (see below for allowable side conditions). A valid inference is
of the form

Φ1S, . . . , ΦkS

ΨS

where S is a substitution such that the conditions RS hold.

The side conditions in R may be of the following four forms:

αj (or xj ) is not free in Φ

s is freely substitutable for α0 (or x0 ) in Φ

where αj , xj , s may be any metavariable of type j , variable of type j or
metaterm (respectively), and where Φ is a metaformula.

Many, but by no means all, formal systems for i-th order logic are
schematic. Examples of schematic inference rules are:

Modus Ponens: Φ1, Φ1 → Φ2/Φ2

(no side conditions)

Universal Instantiation Rule: ∀αjA(αj)/A(τ j)
provided τ j is freely substitutable
for αj in A(αj)

Universal Instantiation Axiom: /∀αjA(αj) → A(τ j)
Same side condition

Comprehension Axiom: /∃αj+1∀βj(βj ∈ αj+1 ↔ A)
provided αj+1 is not free in A

18



In the last two examples, there are no hypotheses to the inference (i.e., they’re
axioms). Recall that for our proof of Gödel’s theorem (or Theorem 3), we
used the assumption that a theory has some schematic form of the universal
instantiation rule or axiom.

It turns out however, that many theories are not schematic in that they
have axioms or rules that can not be captured by a finite list of schemata.
Two common ways that a theory can fail to be schematic are that the theory
may admit all tautologies as axioms and that the theory may allow all
generalizations of axioms as axioms. (For an example of the latter, see
Enderton [4].) By generalization of a formula φ , we mean any formula that
can be obtained by prefixing φ with universal quantifiers.

Definition A theorem T is weakly schematic if T -proofs consist of sequences
of formulas and if valid inference rules are specified by:

(1) a finite set of schemata as for schematic theories (inferences with zero
hypotheses are axioms),

(2) all tautologies are axioms, and

(3) all generalizations of axioms are axioms.

However, it is possible to omit having all tautologies as axioms or to have
only selected axioms have all generalizations also axioms; in these cases we
still call the theory weakly schematic. A weakly schematic theory in which
none of the axioms are selected to have all generalizations as axioms is called
generalization-free.

We can now state the strengthened form of Theorem 6; part (a) is
essentially due to Parikh [11] and is proved by Kraj́ıček [7] in the form
stated here:

Theorem 7 (a) Let T be a schematic theory and suppose T k steps φ. Then

there is a T -proof P of φ with step-length ≤ k such that every formula
in P has depth ≤ dp(φ) + O(k).

(b) Let T be a generalization-free, weakly schematic theory and suppose
T k steps φ. Then there is a T -proof P of φ with step-length ≤ k

such that every formula in P has quantifier depth ≤ q-dp(φ) + O(k).
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(c) Let T be a weakly schematic theory and suppose T k steps φ. Then there

is a T -proof P of φ with step-length ≤ k such that every formula in P
has quantifier-block depth ≤ qb-dp(φ) + O(k).

Our proof of Theorem 7 is based on Parikh’s notion of proof skeleton
and unification. A proof skeleton is a partial description of a potential proof;
a proof skeleton tells how each formula in the proof is to be derived by
specifying which inference rule or axiom schema is used and which lines are
used as hypotheses and which variables were substituted for any metavariables
in the schema. If an axiom is justified as being a tautology then the proof
skeleton gives the propositional tautology of which the axiom is an instance.
If the axiom is a generalization of a tautology or an axiom schema, then the
proof skeleton specifies not only the tautology or schema but also specifies
the entire block of universal quantifiers. However, the proof skeleton does
not specify the instantiations of term variables and formula variables in the
inference schemata (this is in contrast to the fact that the proof skeleton does
specify what variables are substituted for metavariables).

Obviously every proof has a proof skeleton; however, obviously not every
proof skeleton corresponds to a valid proof. In addition, distinct proofs
may have the same proof skeleton. By renaming term variables and formula
variables, we can ensure that the proof skeleton uses distinct term variables
and formula variables for each inference. Such a proof skeleton corresponds
to a proof of the formula φ if and only if there is a substitution S which
makes the skeleton into a proof of φ ; specifically, (a) for the conclusion Φ
of the final inference in the skeleton, ΦS = φ , and (b) S satisfies the
side conditions of each inference, and (c) whenever a metaformula Ψ in the
proof skeleton represents the conclusion of an inference and Ψ′ in the proof
skeleton represents the same formula used as a hypothesis of an inference,
then ΨS = Ψ′S . In other words, a proof skeleton represents a unification
problem which has as solutions precisely the substitutions which transform
the skeleton into a proof. See [11, 8, 7, 5] for more discussion on unification
and proof skeletons.

Suppose T is weakly schematic. Given a T -proof P of φ of k steps, let
PS be its skeleton; Theorem 7(c) will be established by showing that there is
a T -proof P ∗ with the same skeleton such that every formula has qb-depth
≤ qb-dp(φ) + O(k).

First, we can assume w.l.o.g. that every variable appearing in the proof P
is mentioned in the skeleton PS , since, otherwise if y is a variable not occurring
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in P , we can erase every quantifier Qy appearing in P and replace the rest
of the (now free) occurrences of y by the constant 0.7

The proof skeleton PS corresponds to a unification problem consisting of a
set of equations of the form Φ = Ψ plus a set of restrictions (side conditions).
We must prove that there is a substitution S satisfying the equations and
restrictions, so that S induces a proof of φ with all formulas in the proof
have qb-depth bounded by qb-dp(φ) + O(k). We shall not be concerned with
limiting the size of terms in the proof so we need only consider bounding the
size of formulas that S assigns to metaformulas; for this, we examine only the
part of the unification problem corresponding to logical connectives — this
is a so-called first-order unification problem and can be readily solved using
standard techniques:

Claim The unification problem for PS has a most general formula solution
(mgfs); i.e., there is a metasubstitution Smgfs such that Smgfs maps formula
variables to metaformulas but maps term variables to themselves and such
that any other solution S to the unification problem can be expressed as
Smgfs ◦ S ′ for some (meta)substitution S ′ .

Furthermore, let D equal the total number of quantifier blocks occurring
in all the formulas in PS . Then for all metaformulas Φ appearing in PS , the
qb-depth of ΦSmgfs is ≤ D .

To prove the Claim, we assume w.l.o.g. that every equation in D is of the form
A = Φ where A is a 0-ary formula variable (we can ensure this by replacing
each equation Φ = Ψ in D by the two equations A = Φ and A = Ψ where
A is a new formula variable). We will produce Smgfs by iteratively modifying
the set D of equations, creating a new set E of equations. Initially, E is the
empty set. For A and B formula variables occurring in D , we let A ∼ B
mean that an equation A = B(~t) is in D . Let ≈ be the reflexive, transitive,
symmetric closure of ∼ . We write A Â0 B to mean that there is an equation
of the form A = ¯(~Ψ) in D with B occurring in ~Ψ, where ¯ represents a
Boolean connective or a quantifier. We write A º B to denote the transitive
closure of the relation (A ≈ B∨A Â0 B). It is important to stress that the º
relation is redefined after each step of the iterative process modifying D . It is
clear that there must be at least one variable which is maximal with respect
to the º-ordering; since D has a solution.

7If the language does not have a constant symbol, the same effect can be achieved by
using a fixed variable not mentioned in the proof skeleton.
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The iterative process for modifying D and E is as follows: Pick an
arbitrary A which is º-maximal in D such there is an equation of the form
A = ¯(Ψ1, . . . ,Ψs) in D , where either ¯ represents a Boolean connective
(so s = 1 or s = 2), or ¯ is a predicate symbol (s ≥ 1), or ¯ is a maximal
length block of like quantifiers. (In the last case, s = 1 and Ψ1 does not
begin with a quantifier of the same type. Also, by ‘maximal length’ we mean
maximal over all choices for the equation A = ¯(~Ψ).) Note that Ψ1, . . . , Ψs

are metaformulas except in the case where ¯ is a predicate symbol; in the
this case Ψ1, . . . ,Ψs are metaterms. Let ~u be an infinite sequence of new
type 0 variables; when C is k -ary, we write C(~u) for C(u1, . . . , uk). Now, for
each 0-ary formula variable B ≈ A , do the following:

(a) Choose B1, . . . , Bs to be new formula variables, unless ¯ is a predicate
symbol, in which case, choose B1, . . . , Bs to be new term variables.

(b) Find every equation in D of the form B = Ψ. Remove this equation
from D . Replace every occurrence of the formula variable B in E with
the equation ¯(B1, . . . , Bs). Then add the formula B = ¯(B1, . . . , Bs)
to E .

(c) For each equation B = Ψ found in (b) such that Ψ is equal to C(~t)
with C a formula variable and ~t metaterms, let C1, . . . , Cs be new
formula variables of the same arity as C , and add the equations
Bi = Ci(~t) to D (for i = 1, . . . , s). Find every occurrence of C(~u)
in E and replace it with ¯(C1(~u), . . . , Cs(~u)); then add the equation
C(~u) = ¯(C1(~u), . . . , Cs(~u)) to E .

(d) Now consider each equation B = Ψ found in (b) such that Ψ is
⊗(Θ1, . . . , Θs′) with ⊗ a Boolean connective or a predicate symbol:
If ⊗ is not equal to ¯ , then the unification problem has no solution,
contradicting the fact that the proof P exists and provides a solution.
Since ⊗ and ¯ are equal, s′ = s . Add the s equations Bi = Θi to D .

(e) Now consider each equation B = Ψ found in (b) such that Ψ starts with
a quantifier block Q~x . Since ¯ was chosen to be a maximal length and
since there exists a a solution to the unification problem, ¯ consists of
Q~x followed by a (possibly empty) list of similar quantifiers Q~y . In the
case where Q~y is the empty list and thus Ψ is of the form ¯Θ, add
the equation B1 = Θ to D . Otherwise Q~y is not empty and we have
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Ψ of the form Q~xC(~t) where C is a formula variable; in this case, add
C ′ = C(~t) and C ′ = Q~yB1 to D , where C ′ is a new formula variable.

This iterative process stops when all the equations in D are of the form
A = C(~s) where A and C are formula variables. The process must eventually
halt because each iteration of the process reduces the total number of logical
connectives in D . In fact, each iteration removes at least one Boolean
connective or quantifier block from D ; and adds at most one (the same one)
connective or quantifier block to the depth of formulas in E . From this it
follows that the qb-depth of formulas in E is bounded by the total number of
quantifier blocks in the proof skeleton PS . In addition, since one step of the
process is performed on an A that is º-maximal, it is easy to see that after
that step, the new set D of equations does not contain any occurrence of A
or any B ≈ A .

Finally, Smgfs can be defined as follows: Let E be the set of equations
obtained after the final iteration of the above process. If A(~u) = Φ is an
equation in E , then ASmgfs is defined to be Φ. If κ does not appear on the
lefthand side of an equation in E , then κS is just κ . It is easily checked that
Smgfs is well-defined; it is also easily verified that any substitution S which
satisfies the original set of equations and restrictions from the proof skeleton
must be expressible as S = Smgfs ◦ S ′ for some metasubstitution S ′ . (The
last fact is proved by induction on the number of iterations in the process
creating E .)

That completes the proof of the Claim. Theorem 7 can now be proved
relatively easily. Recall that P was assumed to be a T -proof of φ of k steps
and that PS is its proof skeleton. From PS we formed the unification
problem D with side conditions. D has, w.l.o.g., one equation of the form
A = φ and has a total of O(k) equations for the k steps. The number of
quantifier blocks occurring in each of the O(k) equations is bounded by a
constant since there is only a finite number of inference and axiom schemata.8

Let Smgfs be the most general formula substitution from the Claim. Since
D has qb-dp(φ) + O(k) quantifier blocks, Smgfs maps formula variables to
metaformulas of qb-depth ≤ qb-dp(A) + O(k). The proof P is obtained by
applying some substitution S to PS and, by the Claim, S = Smgfs ◦ S ′ for

8However, there is not a constant bound on the number of logical connectives in each
equation since all tautologies are axioms. We do not know if it is possible to bound the
number of connectives in axioms in terms of the number k of proof steps.
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some substitution S ′ . The problem is that S ′ may introduce new quantifier
blocks, giving formulas of high qb-depth in P . However, we can replace
S′ by another substitution S ′′ which does not introduce any new quantifier
blocks (or new Boolean connectives either). S ′′ is defined as follows: for
each formula variable AS ′ is a formula, let P (s1, . . . , s`) be the first (i.e.,
leftmost) atomic subformula of AS ′ and suppose P (~s) is in the scope of
quantifiers Q1y1, . . . , Qryr in AS ′ . Define AS ′′ to be the formula obtained
from P (~s) by replacing every occurrence of y1, . . . , yr in P (~s) by the constant
symbol 0. For all κ ’s which are not formula variables, let κS ′′ equal κS ′ .
Let P ′ = PSSmgfsS

′′ be the proof obtained by applying the substitution
SmgfsS

′′ to the skeleton PS . Clearly every formula in P ′ has qb-depth
≤ qb-dp(φ) + O(k). It remains to show that SmgfsS

′′ satisfies all the side
conditions since then P ′ is a valid proof. The side conditions become of the
form

x does not occur free in Φ

and

τ is freely substitutable for x in φ .

It is easy to check that, since these conditions hold in P = PSS , they
also hold in P ′ ; namely, if x does not occur free in ΦS = ΦSmgfsS

′ , then it
certainly does not occur free in ΦSmgfsS

′′ , and, if τS = τS ′ = τS ′′ is freely
substitutable for x in ΦS = ΦSmgfsS

′ , then it is also freely substitutable
for x in ΦSmgfsS

′′ .
Q.E.D. Theorem 7(c).

Parts (a) and (b) of Theorem 7 are proved similarly. One merely replaces
the qb-depth by ‘depth’ and ‘q-depth’, respectively, and all the arguments go
through with minor modifications.

3 Proof Speedups without Self-Reference

In this section we give an alternative method of proof for Gödel’s theorem
and for Theorem 3 that avoids the use of self-reference; this proof is almost
certainly not the kind of proof that Gödel envisioned and, unlike proofs using
self-reference, is somewhat disappointing from a philosophical (foundational)
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point of view. Nonetheless, it provides important information about the
limitations of proof systems.

The basic idea for this section is due to Statman, to whom the next
theorem is due. Our proof will be based on Theorem 7.

Theorem 8 (Statman [15]) Let T be a schematic theory and let φ be a
formula independent of T . Further suppose T ∪ {¬φ} has an infinite model.
Then there is a number m such that, for each k > 0, there is a tautology ψk

such that

(1) T ∪ {φ} m steps ψk ,

(2) T ` ψk , and

(3) It is not the case that T k steps ψk .

We shall prove a somewhat stronger version of Statman’s theorem which holds
for weakly schematic theories; although, of course, in this case, ψk can no
longer be a tautology since a weakly schematic theory may have all tautologies
as axioms. We also omit the unnecessary assumption that T ∪ {¬φ} has an
infinite model.

Theorem 9

(a) Let T be a weakly schematic theory and φ be a formula not provable by T .
Then there is a number m such that, for all k > 0, there is a valid
formula ψk so that

(1) T ∪ {φ} m steps ψk ,

(2) T ` ψk , and

(3) It is not the case that T k steps ψk .

(b) The same holds for schematic T with the additional condition that ψk is
a tautology.

Note that (b) is basically Theorem 8 with out the infinite model assumption.
The idea of our proof of Theorem 9 is very easy to explain: to prove (b),

take ψk to be a formula θk ∨ φ where θk is the formula

⊥ ∨ (⊥ ∨ (⊥ ∨ · · · ∨ (⊥ ∨>) · · ·))
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where there are k many ∨ ’s and where > is some valid sentence such as
∀x(x = x) and ⊥ is ¬> . Then ψk is clearly a tautology and provable in T ;
furthermore, T ∪ {φ} proves ψk in a constant number of lines. On the other
hand, we will show that if ψk has a proof of fewer than εk lines in some
schematic theory S (where the constant ε depends on S ), then S ` φ . The
intuitive idea behind this last assertion is that since a schematic system can
work with only a finite number of nested ∨ ’s in a single proof step, any proof
of ψk with fewer that εk lines must proceed by proving φ . More formally, we
shall show that any proof of ψk of less than εk lines can be transformed into
a proof of θ⊥k ∨ φ where θ⊥k is the formula θk with the > replaced by ⊥ . But
θ⊥k ∨ φ → φ is clearly provable, which gives a contradiction.

The idea of the proof of (a) is similar but now take θk to be the formula

∃x(⊥ ∨ ∃x(⊥ ∨ ∃x(⊥ ∨ · · · ∨ ∃x(⊥ ∨ ∃x(>)) · · ·))

where, again, there are k many ∨ ’s.
To make this proof idea formal, we first need a lemma. We say that φ and

φ′ are logically similar if they both have the same logical structure (i.e., they
differ only in choice of atomic subformulas).

Lemma 10 (a) Let R be a schematic inference rule and suppose every
metaformula appearing in R has logical depth ≤ D . Let S be a
substitution such that RS is a valid instance of the rule. Let φ be a
formula and suppose that all occurrences in RS of subformulas logically
similar to φ are at depth > D . Then, if every occurrence of every
subformula in RS logically similar to φ is replaced by an arbitrary fixed
sentence ψ (such as > or ⊥), then another valid instance of the rule is
obtained.

(b) Suppose R is a weakly schematically specified axiom given by a metafor-
mula, possibly with side conditions, which may be arbitrarily universally
quantified. Suppose that every metaformula of R and its side conditions
has logical depth ≤ D . Let substitution S and a block of universal
quantifiers specify a valid instance of R. Let φ be a formula that does
not begin with a universal quantifier and suppose every occurrence in RS
of a subformula logically similar to φ is at depth > D . Then by replacing
every occurrence in RS of every subformula logically similar to φ by an
arbitrary fixed sentence ψ , one obtains another valid instance of the rule.
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Proof (a) Obtain S ′ from S by modifying S by letting κS ′ = κS for κ not
a formula variable and letting κS ′ be κS except with every subformula φ∗

logically similar to φ replaced by ψ . Then RS ′ is a valid instance of the
schema R as the side conditions are easily seen to be still satisfied since ψ is
a sentence and has no free occurrences of variables.

Part (b) is proved similarly. 2

We can now prove Theorem 9(a). Since T is a weakly schematic theory, its
rules are either schematic or are generalizations of schematic axioms or are
generalizations of tautologies. Let D be the maximum logical depth of the
metaformulas occurring in the rules of T and let c be the maximum number
of metaformulas occurring in any weakly schematic rule of S . Since all logical
connectives have arity ≤ 2, a formula can have at most 2D+1 − 1 subformulas
occurring at depth ≤ D . Thus in a T -proof of k steps, there are fewer than
k · c · 2D+1 formulas which occur as a subformula of depth ≤ D in a formula
in P .

Let θ0 be ∃x(>) and θi+1 be ∃x(⊥ ∨ θi). Let ψk be θkc2D+1 ∨ φ . Now
suppose P is a T -proof of ψk of ≤ k steps. By the pigeonhole principle, there
is some ` < kc2D+1 such that there is no occurrence of ψ` or any formula
logically similar to ψ` as a subformula of depth ≤ D in any formula in P .
Thus, by Lemma 10, if all occurrences of subformulas in P that are logically
similar to ψ` are replaced by ⊥ , then a valid T -proof P ′ is obtained. Now
P ′ is a proof of θ⊥kc2D+1−` ∨ φ ; since the first disjunct is disprovable, it follows
that T ` φ .

We have shown that if T k steps ψk , then T ` φ . So, if φ is not provable

by T , then it is impossible for T to prove ψk in k steps. However, T ` ψk

since ψk is valid. Also, it is obvious that T ∪ {φ} m steps ψk for some

constant m independent of k since ψk contains φ as a disjunct. That proves
Theorem 9(a).

Part (b) is proved similarly but θkc2D+1 may now be the tautology

⊥ ∨ (⊥ ∨ (⊥ ∨ · · · ∨ (⊥ ∨>) · · ·))

with kc2D+1 many ∨ ’s.
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