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The well known theorem of Gödel shows that every system of logic is in a
certain sense incomplete, but at the same time it indicates means whereby from
a system L of logic a more complete system L′ may be obtained. By repeating
the process we get a sequence L, L1 = L′, L2 = L1

′, L3 = L2
′,. . . of logics

each more complete than the preceding. A logic Lω may then be constructed in
which the provable theorems are the totality of theorems provable with the help
of the logics L, L1, L2,. . . We may then form L2ω related to Lω the same may
as Lω was related to L. Proceeding in this may we can associate a system of
logic with any given constructive ordinal1. It may be asked whether a sequence
of logics of this kind is complete in the sense that to any problem A there
corresponds an ordinal α such that A is solvable by means of the logic Lα. I
propose to investigate this problem in a rather more general case, and to give
some other examples of ways in which systems of logic may be associated with
constructive ordinals.

1The situation is not quite so simple as is suggested by this crude argument. See pages 28–35.
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1 The calculus of conversion. Gödel representations

It will be convenient to be able to use the ‘conversion calculus’ of Church for
the description of functions and some other purposes. This will make greater
clarity and simplicity of expression possible. I shall give a short account of this
calculus. For more detailed descriptions see Church [3, 2], Kleene [12], Church
and Rosser [6].

The formulae of the calculus are formed from the symbols {, }, (, ), [, ], λ,
δ, and an infinite list of others called variables; we shall take for our infinite
list a, b,. . . , z, x′, x′′,. . . Certain finite sequences of such symbols are called
well formed formulae (abbreviated to WFF); we shall define this class induc-
tively, and simultaneously define the free and the bound variables of a WFF.
Any variable is a WFF; it is its only free variable, and it has no bound variables.
δ is a WFF and has no free or bound variables. If M and N are WFF {M}(N)
is a WFF whose free variables are the free variables of M together with the
free variables of N , and those bound variables are the bound variables of M
together with those of N . If M is a WFF and V one of its free variables, then
λV [M ] is a WFF whose free variables are those of M with the exception of V ,
and whose bound variables are those of M together with V . No sequence of
symbols is a WFF except in consequence of these three statements.

In meta-mathematical statements we shall use underlined letters to stand for
variable or undetermined formulae, as was done in the last paragraph, and in
future such letters will stand for well formed formulae unless otherwise stated.
Small letters underlined will stand for formulae representing undetermined pos-
itive integers (see below).

A WFF is said to be in normal form if it has no parts of the form {λV [M ]}(N)
and none of the form {{δ}(M)}(N) where M and N have no free variables.

We say that a WFF is immediately convertible into another if it is obtained
from it either by

(i) Replacing one occurrence of a well formed part λV [M ] by λU [N ] where the
variable U does not occur in M , and N is obtained from M by replacing
the variable V by U throughout.

(ii) Replacing a well formed part {λV [M ]}(N) by the formula which is ob-
tained from M by replacing V by N throughout, provided that the bound

2



variables of M are distinct both from V and from the free variables of N .

(iii) The converse of process (ii).

(iv) Replacing a well formed part {{δ}(M)}(N) by λf [λx[{f}({f}(x))]] if M
is in normal form and has no free variables.

(v) Replacing a well formed part {{δ}(M)}(N) by λf [λx[{f}(x)]] if M and N
are in normal form and not transformable into one another by repeated
application of (i), and have no free variables.

(vi) The converse of process (iv).

(vii) The converse of process (v).

These rules could have been expressed in such a way that in no case could there
be any doubt as to the admissibility or the result of the transformation (in
particular this can be done in the case of process (v).

A formula A is said to be convertible into another B (abbreviated A convB)
if there is a finite chain of immediate conversions leading from one formula to
another. It is easily seen that the relation of convertibility is an equivalence
relation, i.e. it is symmetric, transitive and reflexive.

Since the formulae are liable to be very lengthy we need means for abbreviating
them. If we wish to introduce a particular letter as abbreviation for a partic-
ular lengthy formula we shall write the letter followed by ‘→’ and then by the
formula, thus

I → λx[x]

indicates that I is an abbreviation for λx[x]. We shall also use the arrow in less
sharply defined senses, but never so as to cause any real confusion. In these
cases the meaning of the arrow may be rendered by the words ‘stands for’.

If a formula F is, or is represented by, a single symbol we abbreviate {F}(X)
to F (X). A formula {{F}(X)}(Y ) may be abbreviated to {F}(X,Y ), or to
F (X,Y ) if F is, or is represented by a single symbol.
Similarly for {{{F}(X)}(Y )}(Z), etc. A formula λV 1[λV 2 . . . [λV r[M ]] . . .] may
be abbreviated to λV 1V 2 . . . V r ·M .

We have not yet assigned any meaning to our formulae, and we do not intend
to do so in general. An exception may be made for the case of the positive
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integers which are very conveniently represented by the formulae λfx · f(x),
λfx · f(f(x)),. . . In fact we introduce the abbreviations

1 → λfx · f(x)

2 → λfx · f(f(x))

3 → λfx · f(f(f(x)))

etc. and also say for example that λfx · f(f(x)) (in full λf [λx[{f}({f}(x))]])
represents the positive integer 2. Later we shall allow certain formulas to repre-
sent ordinals, but otherwise we leave them without explicit meaning; an implicit
meaning may be suggested by the abbreviations used. In any case where any
meaning is assigned to formulae it is desirable that the meaning be invariant
under conversion. Our definitions of the positive integers do not violate this
requirement, as it may be proved that no two formulae representing different
positive integers are convertible into one another.

In connection with the positive integers we introduce the abbreviation

S → λufx · f(u(f, x))

This formula has the property that if w represents a positive integer S(w) is
convertible to a formula representing its successor2.

Formulae representing undetermined positive integers will be represented by
small letters underlined, and we shall adopt once for all the convention that if
a letter, w say, stands for a positive integer, then the same letter underlined,
w, stands for the formula representing the positive integer. When no confusion
arises from doing so we shall omit to distinguish between an integer and the
formula which represents it.

Suppose f(n) is a function of positive integers taking positive integers as values,
and that there is a WFF F not containing δ such that for each positive inte-
ger n, F (n) is convertible to the formula representing f(n). We shall then say
that f(n) is λ-definable or formally definable, and that F formally defines f(n).
Similar conventions are used for functions of more than one variable. The
sum function is for instance formally defined by λabfx · a(f, b(f, x)); in fact
for any positive integers m, n, p for which m + n = p we have {λabfx ·
a(f, b(f, x))}(m,n) conv p.

2This follows from Theorem (A) below.

4



In order to emphasize this relation we introduce the abbreviation

X + Y → {λabfx · a(f, b(f, x))}(X,Y )

and will use similar notations for sums of three or more terms, products etc.

For any WFF G we shall say that G enumerates the sequence G(1), G(2),. . .
and any other sequence whose terms are convertible to those of this sequence.

When a formula is convertible to another which is in normal form the second is
described an a normal form of the first, which is then said to have a normal form.
I quote here some of the more important theorems concerning normal forms.

(A) If a formula has two normal forms they are convertible into one another
by the use or (i) alone. (Church and Rosser [6], pages 479, 481.)

(B) If a formula has a normal form then every well formed part of it has a
normal form. (Church and Rosser [6], pages 480–481.)

(C) There is (demonstrably) no process whereby one can tell of a formula
whether it has a normal form. (Church [3], page 360, Theorem XVIII.)

We often need to be able to describe formulae by means of positive integers.
The method used here is due to Gödel (Gödel [8]). To each single symbol S of
the calculus we assign an integer r(S) as in the table below.

S {, ( or [ }, ) or ] λ δ a . . . z x′ x′′ x′′′ . . .

r(s) 1 2 3 4 5 . . . 30 31 32 33 . . .

If S1S2 . . . Sk is a sequence of symbols then 2r[S1]3r[S2] . . . pk
r[Sk] (where pk is

the kth prime number) is called the Gödel representation (GR) of that sequence
of symbols. No two WFF have the same GR.
Two theorems on GR of WFF are quoted here.

(D) There is a WFF form such that if a is the GR of a WFF A without free
variables then form(a) conv A (this follows from a similar theorem to be
found in Church [3], pages 55–66. Metads are used there in place of GR).

(E) There is a WFF Gr such that if A is a WFF with a normal form without
free variables, then Gr(A) conv a, where a is the GR of a normal form of A.
(Church [3], pages 53–66, as (D)).
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2 Effective calculability. Abbreviation of treatment

A function is said to be ‘effectively calculable’ if its values can be found by some
purely mechanical process. Although it is fairly easy to get an intuitive grasp of
this idea it is nevertheless desirable to have some more definite, mathematically
expressible definition. Such a definition was first given by Gödel at Princeton
in 1934 (Gödel [9], page 26) following in part an unpublished suggestion of
Herbrand, and has since been developed by Kleene (Kleene [11]). We shall not
be concerned much here with this particular definition. Another definition of
effective calculability has been given by Church (Church [3], pages 356–358) who
identifies it with λ-definability. The author has recently suggested a definition
corresponding more closely to the intuitive idea (Turing [17], see also Post [14]).
It was said above “a function is effectively calculable if its values can be found
by some purely mechanical process”. We may take this statement literally,
understanding by a purely mechanical process one which could be carried out by
a machine. It is possible to give a mathematical description, in a certain normal
form, of the structures of these machines. The development of these ideas leads
to the author’s definition of a computable function, and an identification of
computability3 with effective calculability. It is not difficult though somewhat
laborious, to prove these three definitions equivalent (Kleene [13], Turing [18]).

In the present paper we shall make considerable use of Church’s identification
of effective calculability with λ-definability, or, what comes to the same, of the
identification with computability and one of the equivalence theorems. In most
cases where we have to deal with an effectively calculable function we shall
introduce the corresponding WFF with some such phrase as “the function f

is effectively calculable, let F be a formula λ-defining it” or “let F be formula
such that F (n) is convertible to. . . whenever n represents a positive integer”.
In such cases there in no difficulty in seeing how a machine could in principle
be designed to calculate the values of the function concerned, and assuming
this done the equivalence theorem can be applied. A statement as to what the
formula F actually is may be omitted. We may introduce immediately on this
basis a WFF ω with the property that

ω(m,n) conv r

if r is the greatest positive integer for which mr divides n, if any, and is 1 if
3We shall use the expression ‘computable function’ to mean a function calculable by a machine,
and let ‘effectively calculable’ refer to the intuitive idea without particular identification with
any one of these definitions. We do not restrict the values taken by a computable function
to be natural numbers; we may for instance have computable propositional functions.
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there is none. We also introduce Dt with the properties

Dt(n, n) conv 3

Dt(n+m,n) conv 2

Dt(n, n+m) conv 1

There is another point to made clear in connection with the point of view we
are adopting. It is intended that all proofs that are given should be regarded
no more critically than proofs in classical analysis. The subject matter, roughly
speaking, is constructive systems of logic, but as the purpose is directed towards
choosing a particular constructive system of logic for practical use; an attempt
at this stage to put our theorems into constructive form would be putting the
cart before the horse.

These computable functions which take only the values 0 and 1 are of particular
importance since they, determine and are determined by computable properties,
as may be seen by replacing ‘0’ and ‘1’ by ‘true’ and ‘false’. But besides this type
of property we may have to consider a different type, which is, roughly speaking,
less constructive than the computable properties, but more so than the general
predicates of classical mathematics. Suppose we have a computable function
of the natural numbers taking natural numbers as values, then corresponding
to this function there is the property of being a value of the function. Such a
property we shall describe as ‘axiomatic’; the reason for using this term in that
it is possible to define such a property by giving a set of axioms, the property
to hold for a given argument if and only if is possible to deduce that it holds
from the axioms.

Axiomatic properties may also be characterized in this way. A property ψ of
positive integers is axiomatic if and only if there is a computable property ϕ

of two positive integers, such that ψ(x) is true if and only if there is a positive
integer y such that ϕ(x, y) is true. Or again ψ is axiomatic if and only if there
is a WFF F such that ψ(n) is true in and only if F (n) conv 2.

7



3 Number theoretic theorems

By a number theoretic theorem4 we shall mean a theorem of the form ‘θ van-
ishes for infinitely many natural numbers x’, where θ(x) is a primitive recursive5

We shall say that a problem is number theoretic if it has been shown that any
solution of the problem may be put in the form of a proof of one or more num-
ber theoretic theorems. More accurately we may say that a class of problems
is number theoretic if the solution of any one of them can be transformed (by
a uniform method) into the form of proofs of number theoretic theorems.

I shall now draw a few consequences from the definition of ‘number theoretic
theorems’, and in section § 5 will try to justify confining our considerations to
this type of problem.

An alternative form for number theoretic theorems is ‘for each number x there
exists a natural number y such that ϕ(x, y) vanishes’ where ϕ(x, y) is primitive
recursive and conversely. In other words, there is a rule whereby given the func-
tion θ we can find a function ϕ(x, y), or given ϕ(x, y) we can find a function θ,
so that ‘θ vanishes infinitely often’ is a necessary and sufficient condition for
‘for each x there is y so that ϕ(x, y) = 0. In fact given θ(x) we define

ϕ(x, y) = θ(y) + α(x, y)
4I believe there is no generally accepted meaning for this term, but it should be noticed that
we are using it in a rather restricted sense. The most generally accepted meaning is probably
this: suppose we take an arbitrary formula of the function calculus of first order and replace
the function variables by primitive recursive relations. The resulting formula represents a
typical number theoretic theorem in this (more general) sense.

5Primitive recursive functions of natural numbers are defined inductively as follows. Suppose
f(x1, . . . , xn−1), g(x1, . . . , xn), h(x1, . . . , xn+1) are primitive recursive. Then ϕ(x1, . . . , xn)
is primitive recursive if it is defined by one of the sets of equations (a)-(e).

(a) ϕ(x1, . . . , xn) = h(x1, . . . , xm−1, g(x1, . . . , xn), xm+1, . . . , xn−1, xn), (1 6 m 6 n).

(b) ϕ(x1, . . . , xn) = f(x1, . . . , xn−1).

(c) ϕ(x1) = a, where n = 1 and a is some particular natural number.

(d) ϕ(x1) = x1 + 1 (n = 1).

(e)


ϕ(x1, . . . , xn−1, 0) = f(x1, . . . , xn−1)
ϕ(x1, . . . , xn−1, xn + 1) = h(x1, . . . , xn, ϕ(x1, . . . , xn))

The class of primitive recursive functions is more restricted than the computable functions,
but has the advantage that there is a process whereby one can tell of a set of equations
whether it defines a primitive recursive function in the manner described above.
If ϕ(x1, . . . , xn) is primitive recursive then ϕ(x1, . . . , xn) = 0 is described as a primitive
recursive relation between x1,. . . , xn.
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where α(x, y) is the (primitive recursive) function with the properties

α(x, y) =

{
1 (y 6 x)
0 (y > x)

If on the other hand we are given ϕ(x, y) we define θ(x) by the equations

θ1(0) = 3
θ1(x+ 1) = 3× 2

3(θ1(x))σ(ϕ(ω3(θ1(x))−1, ω3(θ1(x)))

θ(x) = ϕ (ω3(θ1(x))− 1, ω2(θ1(x)))

(3.1)

where ωr(x) is to be defined so as to mean ‘the largest s for which rs divides x’
and 2

3x to be defined primitive recursively so as to have its usual meaning if x
is a multiple of 3. The function σ(x) is to be defined by the equations σ(0) = 0,
σ(x+ 1) = 1. It is easily verified that the functions so defined have the desired
properties.

We shall now show that questions as to the truth of statements of form ‘does f(x)
vanish identically’, where f(x) is a computable function, can be reduced to ques-
tions as to the truth of number theoretic theorems. It is understood that in
each case the rule for the calculation of f(x) is given and that one is satisfied
that this rule is valid, i.e. that the machine which should calculate f(x) is circle
free (Turing [17]). The function f(x) being computable is general recursive in
the Herbrand–Gödel sense, and therefore by a general theorem due to Kleene6

is expressible the form
ψ(µy [ϕ(x, y) = 0]) (3.2)

where µy[U(y)] means ‘the least y for which U(y) is true’ and ψ(y) and ϕ(x, y)
are primitive recursive functions. Then if we define ρ(x) by the equations (3.1)
and

ρ(x) = ϕ(ω3(θ1(x))− 1, ω2(θ1(x)) + ψ(ω2(θ1(x))))

it will be seen that f(x) vanishes identically if and only if ρ(x) vanishes for
infinitely many values of x.

The converse of this result is not quite true. We cannot say that the question
as to the truth of any number theoretic theorem is reducible to a question as to
whether a corresponding computable function vanishes identically; we should
have rather to say that it is reducible to the problem as to whether a certain
6 Kleene [13], page 727. This result is really superfluous for our purpose, as the proof that
every computable function is general recursive proceeds by showing that these functions are
of form (3.2).
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machine is circle free and calculates an identically vanishing function. But more
is true: every number theoretic theorem is equivalent to the statement that a
corresponding machine is circle free. The behavior of the machine may be
described roughly as follows: the machine is one for calculation of the primitive
recursive function θ(x) of the number theoretic problem, except that the results
of the calculation are first arranged in a form in which the figures 0 and 1 do
not occur, and the machine is then modified so that whenever it has been found
that the function vanishes for some value of the argument, then 0 is printed.
The machine is circle free if and only if an infinity of these figures are printed,
i.e. if and only if θ(x) vanishes for infinitely many values of the argument.

That, on the other hand, questions as to circle freedom may be reduced to ques-
tions of the truth of number theoretic theorems follows from the fact that θ(x)
is primitive recursive when it is defined to have the value 0 if a certain ma-
chine M prints 0 or 1 in its (x+ 1)th complete configuration, and to have the
value 1 otherwise.

The conversion calculus provides another normal form for the number theoretic
theorems, and the one we shall find the most convenient to use. Every number
theoretic theorem is equivalent to a statement of the form ‘A(n) is convert-
ible to 2 for every WFF n representing a positive integer’, A being a WFF
determined by the theorem; the property of A here asserted will be described
briefly as ‘A is dual’. Conversely such statements are reducible to number the-
oretic theorems. The first half of this assertion follows from our results for
computable functions, or directly in this way. Since θ(x − 1) + 2 is primitive
recursive, it is formally definable, by means of a formula G let us say. Now
there is (Kleene [12], page 252) a WFF % with the property that if T (r) is con-
vertible to a formula representing a positive integer for each positive integer r,
then %(T, n) is convertible to s where s is the nth positive integer t (if there is
one) for which T (t) conv 2; if T (t) conv 2 for less than n values of t then %(T, n)
has no normal form. The formula G(%(G,n)) will therefore be convertible to 2
if and only if θ(x) vanishes for at least n values of x, and will be convertible
to 2 for every positive integer x if and only if θ(x) vanishes infinitely often. To
prove the second part of the assertion we take Gödel representations for the
formulae of the conversion calculus. Let c(x) be 0 if x is the GR of 2 (i.e. if x is
23 ·310 ·5 ·73 ·1128 ·13 ·17 ·1910 ·232 ·29 ·31 ·3728 ·412 ·43 ·4728 ·532 ·592 ·612 ·672)
and otherwise be 1. Take an enumeration of the GR of the formula into which
A(m) is convertible; let a(m,n) be the nth number in the enumeration. We can
arrange the enumeration so that a(m,n) is primitive recursive. Now the state-
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ment that A(m) is convertible to 2 for every positive integer m is equivalent to
the statement that for each positive integer m there is a positive integer n such
that c(a(m,n)) = 0, and this is number theoretic.

It is easy to show that a number of unsolved problems such as the problem
as to the truth of Fermat’s last theorem are number theoretic. There are,
however, also problems of analysis which are number theoretic. The Riemann
hypothesis gives us an example of this. We denote by ζ(s) the function defined
for Rs = σ > 1 by the series

∑∞
n=1

1
ns and over the rest of the complex plane

with the exception of the point s = 1 by analytic continuation. The Riemann
hypothesis asserts that this function does not vanish in the domain σ > 1

2 .
It is easily shown that this is equivalent to saying that it does not vanish for
2 > σ > 1

2 , Rs = t > 2 i.e. that it does not vanish inside any rectangle
2 > σ > 1

2 + 1
T , T > t > 2 where T is an integer greater than 2. Now the

function satisfies the inequalities∣∣∣∣∣ζ(s)−
n∑
1

n−s − N1−s

s− 1

∣∣∣∣∣ < 2t(N − 2)−1/2 2 < σ < 1/2, t > 2

|ζ(s)− ζ(s′)| < |s− s′| × 60t 2 < σ′ < 1/2, t′ > 2


and we can define a primitive recursive function ξ(l, l′,m,m′, N,M) such that∣∣∣∣∣ξ(l, l′,m,m′, N,M)−M

∣∣∣∣∣
N∑
1

n−s +
N1−s

s− 1

∣∣∣∣∣
∣∣∣∣∣ < 2

(
s =

l

l′
+ i

m

m′

)

and therefore if we put

ξ(l,M,m,M,M2 + 2,M) = X(l,m,M)

we shall have ∣∣∣∣ζ ( l + v

M
+ i

m+ v′

M

)∣∣∣∣ > X(l,m,M)− 122T
M

1
2

+
1
T

6
l − 1
M

<
l + 1
M

< 2− 1
M
,

2 <
m− 1
M

<
m+ 1
M

< T, −1 < v < 1, −1 < v′ < 1
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if we define B(M,T ) to be the smallest va1ue of X(l,m,M) for which

1
2

+
1
T

+
1
M

6
l

M
< 2− 1

M
, 2 +

1
M

<
m

M
< T − 1

M

then the Riemann hypothesis is true if for each T there isM satisfyingB(M,T ) >
122T . If on the other hand there is T such that for all M , B(M,T ) 6 122T ,
the Riemann hypothesis is false; for let lM , mM be such that X(lM ,mM ,M) 6

122T , then ∣∣∣∣ζ ( lM + imM

M

)∣∣∣∣ 6 244T
M

Now if a is a condensation point of the sequence lM +imM
M then since ζ(s) is

continuous except at s = 1 we must have ζ(a) = 0 implying the falsity of the
Riemann hypothesis. Thus we have reduced the problem to the question as to
whether for each T there is an M for which

B(M,T ) > 122T

B(M,T ) is primitive recursive, and the problem is therefore number theoretic.
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4 A type of problem which is not number theoretic

Let7 us suppose that we supplied with some unspecified means of solving num-
ber theoretic problems; a kind of oracle as it were. We will not go any further
into the nature of this oracle than to say that it cannot be a machine; with the
help of the oracle we could form a new kind of machine (call them o-machines),
having as one of its fundamental processes that of solving a given number the-
oretic problem. More definitely these machines are to behave in this way. The
moves of the machine are determined as usual by a table except in the case of
moves from a certain internal configuration o. If the machine is in the internal
configuration o and if the sequence of symbols marked with l is then the well
formed8 formula A, then the machine goes into the internal d or n according
as it is or is not true that A is dual. The decision as to which is the case is
referred to the oracle.

These machines may be described by tables of the same kind as used for the
description of a-machines, there being no entries, however, for the internal
configuration o. We obtain description numbers from these tables in the same
way as before. If we make the convention that in assigning numbers to internal
configurations o, d, n are always to be q2, q3, q4, then the description numbers
determine the behavior of the machines uniquely.

Given any one of these machines we may ask ourselves the question whether or
not it prints an infinity of figures 0 or 1; I assert that this class of problems is not
number theoretic. In view of the definition of ‘number theoretic problem’ this
means to say that it is not possible to construct an o-machine which when sup-
plied9 with the description of any other o-machine will determine whether that
machine is o-circle free. The argument may be taken directly from Turing [17],
page 8. We that a number is o-satisfactory if it is the description number of
an o-circle free machine. Then if there is an o-machine which will determine of
any integer whether it is o-satisfactory then there is also an o-machine to cal-
culate the values of the function 1− ϕn(n). Let r(n) be the nth o-satisfactory
number and let ϕn(m) be the mth figure printed by the o-machine whose de-
scription number is n. This o-machine is circle free and there is therefore an
o-satisfactory number k such that ϕk(n) = 1 − ϕn(n) for all n. Putting n = k

yield a contradiction. This completes the proof that problems of circle freedom
of o-machines are not number theoretic.
7Compare Rosser [15].
8Without real loss of generality we may suppose that A is always well formed.
9Compare Turing [17], § 6, 7.
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Propositions of the form that an o-machine is o-circle free can always be put in
the form of propositions obtained from formulae of the functional calculus of
first order by replacing some of the functional variables by primitive recursive
relations. Compare footnote 6.
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5 Syntactical theorem as number theoretic theorems

I shall mention a property of number theoretic theorems which suggests that
there is reason for regarding them as of particular importance.

Suppose that we have some axiomatic system of a purely formal nature. We
do not interest ourselves at all in interpretation for the formulae of this system.
They are to be regarded as of interest for themselves. An example of what is
in mind is afforded by the conversion calculus (§1). Every sequence of symbols
‘A convB’ whereA andB are well formed formulae, is a formula of the axiomatic
system and is provable if the WFF A is convertible to B. The rules of conversion
give us the rules of procedure in this axiomatic system.

Now consider a new rule of procedure which is reputed to yield formulae prov-
able in the original sense. We may ask ourselves whether such a rule is valid.
The statement that such a rule is valid would be number theoretic. To prove
this let us take Gödel presentations for the formulae, and an enumeration of the
provable formulae; let ϕ(r) be the GR of the rth formula in the enumeration.
We may suppose ϕ(r) is primitive recursive if we do not mind repetitions in the
enumeration. Let ψ(r) be the GR of the rth formula obtained by the new rule,
then the statement that this new rule is valid is equivalent to the assertion of

∀r∃s : [ψ(r) = ϕ(s)]

(the domain of individuals being the natural numbers). It has been shown in §3
that such statements are number theoretical.

It might plausibly be argued that all theorems of mathematics which have any
significance when taken alone, are in effect syntactical theorems of this kind
stating that the validity of certain ‘derived rules’ of procedure. Without going
so far as this I should say that theorems of this kind have an importance which
make it worth while to give them special consideration.
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6 Logic formulae

We shall call a formula L a logic formula (of, it is clear that we are speaking of
a WFF, simply a logic) if it has the property that if A is a formula such that
L(A) conv 2 then A is dual.

A logic formula gives us a means of satisfying ourselves of the truth of number
theoretic theorems. For to each number theoretic proposition there corresponds
a WFF A which is dual if and only if the proposition is true. Now if L is a logic
and L(A) conv 2 then A is dual and we know that the corresponding number
theoretic proposition is true. It does not follow that if L is a logic we can use L
to satisfy ourselves of the truth of any true number theoretic theorem.

If L is a logic the set of formulae A for which L(A) conv 2 will be called the
extent of L.

It may be proved by the use of (D), (E) page 5, that there is a formula X

such that if M has a normal form and no free variables and is not convertible
to 2, then X(M) conv 1, but if M conv 2 then X(M) conv 2. If L is a logic then
λx · X(L(x)) is also a logic, whose extent is the same as that of L, and has
the property that if A has no free variables then {λx ·X(L(x))}(A) is always
convertible to 1 or to 2 or else has no normal form. A logic with this property
will be said to be standardized.

We shall say that a logic L′ is at least as complete as a logic L if the extent
of L is a subset of the extent of L′. The logic L′ will be more complete than L
if the extent of L is a proper subset of the extent of L′.

Suppose that we have an effective set of rules by which we can prove formulae
to be dual; i.e. we have a system of symbolic logic in which the propositions
proved are of the form that certain formulae are dual. Then we can find a logic
formula whose extent consists of just those formulae which can be proved to
be dual by the rules; that is to say that there is a rule for obtaining the logic
formula from the system of symbolic logic. In fact the system of symbolic logic
enables us to obtain10 a computable function of positive integers whose values
run through the Gödel representations of the formulae provable by means of
the given rules. By the theorem of equivalence of computable and λ-definable
functions there is a formula J such that J(1), J(2),. . . are the GR of these
10Compare Turing [17], 252, second footnote, [18], 156.
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formulae. Now let

W → λjv · P(λu · δ(j(u), v), 1, I, 2)

then I assert that W (J) is a logic with the required properties. The properties
of P imply that P(C, 1) is convertible to the least positive integer n for which
C(n) conv 2, and has no normal form if there is no such integer. Consequently
P(C, 1, I, 2) is convertible to 2 if C(n) conv 2 for some positive integer n, and
has no normal form otherwise. That is to say that W (J,A) conv 2 if and only
if δ(J(n), A) conv 2, some n, i.e. if J(n) conv A some n.

There is conversely a formula W ′ such that if L is a logic then W ′(L) enumerates
the extent of L. For there is a formula Q such that Q(L,A, n) conv 2 if and only
if L(A) is convertible to 2 in less than n steps. We then put

W ′ → λln · form ( ω(2,P(λx ·Q(l, form(ω(2, x)), ω(3, x)), n)) )

Of course W ′(W (J)) will normally be entirely different from J and W (W ′(L))
from L.

In the case where we have symbolic logic those propositions can be interpreted
as number theoretic theorems, but are not expressed in the form of the duality
of formulae we shall again have a corresponding logic formula, but its relation
to the symbolic logic will not be so simple. As an example let us take the case
that the symbolic logic proves that certain primitive recursive functions vanish
infinitely often. As was shown in §3 we can associate with each such proposition
a WFF which is dual if and only if the proposition is true. When we replace the
propositions of the symbolic logic by theorems on the duality of formulae in this
way our previous argument applies, and we obtain a certain logic formula L.
However L does not determine uniquely which are the propositions provable
in the symbolic logic; for it is possible that ‘θ1(x) vanishes infinitely often’
and ‘θ2(x) vanishes infinitely often’ are both associated with ‘A is dual’ and
that the first of these propositions is provable in the system, but the second
not. However, if we suppose that the system of symbolic logic is sufficiently
powerful to be able to carry out the argument on page 10 then this difficulty
cannot arise. There is also the possibility that there may be formulae in the
extent of L with no propositions of the form ‘θ(x) vanishes infinitely often’
corresponding to them. But to each such formula we can assign (by a different
argument) a proposition P of the symbolic logic which is the necessary and
sufficient condition for A to be dual. With P is associated (in the first way)
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a formula A′. Now L can always be modified so that its extent contains A′

whenever it contain A.

We shall be interested principally in questions of completeness. Let us suppose
that we have a class of systems of symbolic logic the propositions of these
systems being expressed in a uniform notation and interpretable as number
theoretic theorems; suppose also there is a rule by which we can assign to each
proposition P of the notation a WFF AP which is dual if and only if P is
true, and that to each WFF A we can assign a proposition PA which is the
necessary and sufficient condition for A to be dual. PAP

is to be expected to
differ from P . To each symbolic logic C we can assign two logic formulae LC
and L′C . A formula A belongs to the extent of LC if PA is provable in C, while
the extent of L′C consists of all AP where P is provable in C. Let us say that
the class of symbolic logics is complete if each true proposition is provable in
one of them; let us also say that a class of logic formulae is complete if the set
theoretic sum of the extents of these logics includes all dual formulae. I assert
that a necessary condition for a class of symbolic logics C to be complete is
that the class of logics LC be complete, while a sufficient condition in that the
class of logics L′C be complete. Let us suppose that the class of symbolic logics
is complete; consider PA where A is arbitrary but dual. It must be provable
in one of the systems, C say. A therefore belongs to the extent of LC , i.e.,
the class of logics LC is complete. Now suppose that the class of logics L′C is
complete. Let P be an arbitrary true proposition of the notation; AP must
belong to the extent of some L′C , and this means that P is provable in C.

We shall say that a single logic formula L is complete if its extent includes
all dual formulae; that is to say that it is complete if it enables us to prove
every true number theoretic theorem. It is a consequence of the theorem of
Gödel (if suitably extended) that no logic formula is complete, and this also
follows from (C), page 5 or from the results of Turing [17], §8, when taken in
conjunction with § 3 of the present paper. The idea of completeness of a logic
formula will not therefore be very important, although it is useful to have a
term for it.

Suppose Y is a WFF such that Y (n) is a logic for each positive integer n. The
formulae of the extent of Y (n) are enumerated by W (Y (n)), and the combined
extents of these logics by λr ·W (Y (ω(2, r)), ω(3, r)). Putting

Γ → λy ·W ′(λr ·W (y(ω(2, r)), ω(3, r)))
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Γ(Y ) is a logic whose extent is the combined extent of Y (1), Y (2), Y (3),. . .

To each WFF L we can assign a WFF V (L) such that the necessary and suf-
ficient condition for L to be a logic formula is that V (L) be dual. Let Nm be
a WFF which enumerates all formulae with normal forms. Then the condition
that L be a logic is that L(Nm(r), s) conv 2 for all positive integer r, s, i.e. that
λa · L(Nm(ω(2, a)), ω(3, a)) be dual. We may therefore put

V → λla · l(Nm(ω(2, a)), ω(3, a)).
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7 Ordinals

We begin our treatment of ordinals with some brief definitions from the Cantor
theory of ordinals, but for the understanding of some of the proofs a greater
amount of the Cantor theory is necessary than is here set out.

Suppose we have a class determined by the propositional function D(x) and a
relation G(x, y) ordering them, i.e. satisfying

G(x, y) ∧G(y, z) ⊃ G(x, z) (i)
D(x) ∧D(y) ⊃ G(x, y) ∨G(y, x) ∨ (x = y) (ii)
G(x, y) ⊃ D(x) ∧D(y) (iii)
∼G(x, x) (iv)

 (7.1)

The class defined by D(x) is then called a series with the ordering relation
G(x, y). The series is said to be well ordered and the ordering relation is called
an ordinal if every sub-series which is not void has a first term, i.e. if11

∀D′ : (∃x : D′(x)) ∧ (∀x : (D′(x) ⊃ D(x))) ⊃
⊃ ∃z∀y : [D′(z) ∧ (D′(y) ⊃ G(z, y) ∨ (z = y))]}

(7.2)

The condition (7.2) is equivalent to another, more suitable for our purposes,
namely the condition that every descending sub-sequence must terminate; for-
mally

∀x {(D′(x) ⊃ D(x)) ∧ (∃y : D′(y) ∧G(y, x))} ⊃ (∀x : ∼D′(x)) (7.3)

The ordering relation G(x, y) is said to be similar to G′(x, y) if there is a one-
one correspondence between the series transforming the one relation into the
other. This is best expressed formally

∃M : {(∀x : D(x) ⊃ [∃x′ : M(x, x′)] ∧
[(∀x′ : D′(x′) ⊃ [∃x : M(x, x′)] ∧
[(M(x, x′) ∧M(x, x′′)) ∨ (M(x′, x) ∧M(x′′, x)) ⊃ (x′ = x′′)] ∧
[M(x, x′) ∧M(y, y′) ⊃ (G(x, y) ≡ G′(x′, y′))]}

(7.4)
Ordering relations are regarded as belonging to the same ordinal if and only if
they are similar.
11[A x of the original text was replaced by y.]
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We wish to give names to all the ordinals, but this will not be possible until they
have been restricted in some way; the class of ordinals as at present defined is
more than enumerable. The restrictions we actually put are these: D(x) is to
imply that x is a positive integer; D(x) and G(x, y) are to be computable prop-
erties. Both of the propositional functions D(x), G(x, y) can then be described
by means of a single WFF Ω with the properties.

Ω(m,n) conv 4 unless both D(m) and D(n) are true,
Ω(m,m) conv 3 if D(m) is true,
Ω(m,n) conv 2 if D(m), D(n), G(m,n), ∼(m = n), are true,
Ω(m,n) conv 1 if D(m), D(n), ∼G(m,n), ∼(m = n), are true.

Owing to the conditions to which D(x), G(x, y) are subjected Ω must further
satisfy

(a) if Ω(m,n) is convertible to 1 or 2 then Ω(m,m) and Ω(n, n) are convertible
to 3,

(b) if Ω(m,m) and Ω(n, n) are convertible to 3 then Ω(m,n) is convertible to 1,
2, or 3,

(c) if Ω(m,n) is convertible to 1 then Ω(n,m) is convertible to 2 and conversely,

(d) if Ω(m,n) and Ω(n, p) are convertible to 1 then Ω(m, p) is also,

(e) there is no sequence m1, m2,. . . such that Ω(mi+1,mi) is convertible to 2
for every positive integer i,

(f) Ω(m,n) is always convertible to 1, 2, 3, or 4.

If a formula Ω satisfies these conditions then there are corresponding propo-
sitional functions D(x), G(x, y). We shall therefore say that Ω is an ordinal
formula if it satisfies the conditions (a)–(f). It will be seen that a consequence
of this definition is that Dt is an ordinal formula. It represents the ordinal ω.
The definition we have given does not pretend to have virtues such an elegance
or convenience. It has been introduced rather to fix our ideas and to show how
it is possible in principle to describe ordinals by means of well formed formulae.
The definitions could be modified in a number of ways. Some such modifica-
tions are quite trivial; they are typified by modifications such as changing the
numbers 1, 2, 3, 4 used in the definition to some others. Two such definitions
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will be said to be equivalent; in general we shall say that two definitions are
equivalent if there are WFF T , T ′ such that if A is an ordinal formula under one
definition and represents the ordinal α, then T ′(A) is an ordinal formula under
the second definition and represents the same ordinal, and conversely if A′ is an
ordinal formula under the second definition representing α, then T (A′) repre-
sents α under the first definition. Besides definitions equivalent in this sense to
our original definition there are a number of other possibilities open. Suppose
for instance that we do not require D(x) and G(x, y) to be computable, but
only that D(x) and G(x, y)∧ (x < y) be axiomatic12. This leads to a definition
of ordinal formula which is (presumably) not equivalent to the definition we are
using13.

There are numerous possibilities, and little to guide us as to which definition
should be chosen. No one of them could well be described as ‘wrong’; some of
them may be found more valuable in applications than others, and the particular
choice we have made has been partly determined by the applications we have in
view. In the case of theorems of a negative character one would wish to prove
them for each one of the possible definitions of ‘ordinal formula’. This program
could I think be carried through for the negative results of § 9, § 10.

Before leaving the subject of possible ways of defining ordinal formulae I must
mention another definition due to Church and Kleene (Church and Kleene [5]),
We can make use of this definition in constructing ordinal logics, but it is more
convenient to use a slightly different definition which is equivalent (in the sense
described on page 21) to the Church-Kleene definition as modified in Church [4].
Introduce the abbreviations

U → λufx · u(λy · f(y(I, x)))

Suc → λaufx · f(a(u, f, x))

We define first a partial ordering relation ‘<’ which holds between certain pairs
of WFF (conditions (1)–(5)).

(1) If A convB then A < C implies B < C and C < A implies C < B.
12To require G(x, y) to be axiomatic would amount to requiring G(x, y) computable on account

of (7.1).
13On the other hand if D(x) be axiomatic and G(x, y) computable in the modified sense that

there is a rule for determining whether G(x, y) is true, which leads to a definite result in
all cases where D(x) and D(y) are true, the corresponding definition of ordinal formula is
equivalent to our definition. To give the proof would be too much of a digression. Probably
a number of other equivalence of this kind hold.
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(2) A < Suc(A)

(3) For any positive integers m, n, λufx · R(n) < λufx · R(m) implies λufx ·
R(n) < λufx · u(R).

(4) If A < B and B < C then A < C. (1)–(4) are required for any WFF A, B,
C, λufx ·R.

(5) The relation A < B holds only when compelled to do so by (1)–(4).

We define C-K ordinal formulae by the conditions (6)–(10).

(6) If A convB and A is a C-K ordinal formula then B is a C-K ordinal formula.

(7) U is a C-K ordinal formula.

(8) If A is a C-K ordinal formula then Suc(A) is a C-K ordinal formula.

(9) If λufx ·R(n) is a C-K ordinal formula and λufx ·R(n) < λufx ·R(S(n))
for each positive integer n then λufx · u(R) is a C-K ordinal formula.

(10) A formula is a C-K ordinal formula only if compelled to be so by (6)–(9).

The representation of ordinals by formulae is described by (11)–(15).

(11) If A convB and A represents α then B represents α.

(12) U represents 1.

(13) If A represents α then Suc(A) represents α+ 1.

(14) If λufx · R(n) represents αn for each positive integer n then λufx · u(R)
represents the upper bound of the sequence α1, α2, α3,. . .

(15) A formula represents an ordinal only when compelled to do so by (11)–(14).

We denote any ordinal represented by A by ΞA without prejudice to the pos-
sibility that more than one ordinal may be represented by A. We shall write
A 6 B to mean A < B or A convB.

In proving properties of C-K ordinal formulae we shall often use a kind of
analogue of the principle of transfinite induction. If ϕ is some property and we
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have

(a) if A convB and ϕ(A) then ϕ(B),

(b) ϕ(U),

(c) if ϕ(A) then ϕ(Suc(A)),

(d) if ϕ(λufx ·R(n)) and λufx ·R(n) < λufx ·R(S(n))
for each positive integer n, then ϕ(λufx · u(R));


(7.5)

then ϕ(A) for each G-K ordinal formula A. To prove the validity of this principle
we have only to observe that the class of formulae A satisfying ϕ(A) is one of
those of which the class of C-K ordinal formula was defined to be the smallest.
We can use this principle to help us prove:

(i) Every C-K ordinal formula is convertible to the form λufx ·B where B is
in normal form.

(ii) There is a method by which one can determine of any C-K ordinal formula
into which of the forms U , Suc(λufx · B), λufx · u(R), where u is free
in R, it is convertible, and to determine B, R. In each case B, R are
unique apart from conversions.

(iii) If A represents any ordinal ΞA is unique. If ΞA, ΞB exist and A 6 B

then ΞA 6 ΞB.

(iv) If A, B, C are C-K ordinal formulae and B < A, C < A then either
C < B, B < C, or B convC.

(v) A formula A is a C-K ordinal if

(A) U 6 A.

(B) If λufx · u(R) 6 A and n is a positive integer then λufx · R(n) <
λufx ·R(S(n)).

(C) For any two WFF B, C with B < A, C < A we have B < C, C < B,
or B convC, but never B < B.

(D) There is no infinite sequence B1, B2,. . . for which Br < Br−1 < A

each r.

(vi) There is a formula H such that if A a C-K ordinal formula then H(A) is
an ordinal formula representing the same ordinal. H(A) is not an ordinal
formula unless A is a C-K ordinal formula.
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Proof of (i). Take ϕ(A) to be ‘A is convertible to the form λufx · B where B
is in normal form’. The conditions (a) and (b) of (7.5) are trivial. For (c)
supposeA conv λufx·B whereB is in normal form, then Suc(A) conv λufx·f(B)
and f(B) is in normal form. For (d) we have only to show that u(R) has a
normal form, i.e. that R has a normal form, which is true since R(1) has a
normal form.

Proof of (ii). Since by hypothesis the formula is a C-K ordinal formula we have
only to perform conversions on it until it is in one of the forms described.
It is not possible to convert it into two of these three forms. For suppose
λufx·f(A(u, f, x)) conv λufx·u(R) and is a C-K ordinal formula; it is therefore
convertible to the form λufx · B where B is in normal form. But the normal
form of λufx · u(R) can be obtained by conversions on R and that of λufx ·
f(A(u, f, x)) by conversions on A(u, f, x) (as follows from Church and Rosser [6]
theorem 2) but this would imply that the formula in question had two normal
forms, one of form λufx · u(S) and one of the form λufx · f(C), which is
impossible. Or suppose U conv λufx · u(R) where R is a well formed formula
with u as a free variable. It now only remains to show that if Suc(λufx ·
B) conv Suc(λufx · B′) and λufx · u(R) conv λufx · u(R) then B convB′ and
R convR′.

If Suc(λufx ·B) conv Suc(λufx ·B′)
then λufx · f(B) conv λufx · f(B′)

but both these formulas can be brought to normal form by conversions on B,
B′ and therefore B convB′. The same argument applies in the case that λufx ·
u(R) conv λufx · u(R′).

Proof of (iii). To prove the first part take ϕ(A) to be ‘ΞA is unique’. (7.5)-(a)
is trivial and (7.5)-(b) follows from the fact that U is not convertible either to
the form Suc(A) or λufx · u(R) where R has u as a free variable. For (7.5)-(c):
Suc(A) is not convertible to the form λufx ·u(R); the possibility of Suc(A) rep-
resenting an ordinal on account of (12) or (14) is therefore eliminated. By (13)
Suc(A) represents α′ + 1 if A′ represents α′ and Suc(A) conv Suc(A′). If we
suppose A represents α, then A, A′ being C-K ordinal formulae are convertible
to the forms λufx ·B, λufx ·B′, but then by (ii) B convB′ i.e. A convA′, and
therefore by the hypothesis ϕ(A), α = α′. Then ΞSuc(A) = α′ + 1 is unique.
For (7.5)-(d): λufx·u(R) is not convertible to the form Suc(A) or to U if R has u
as a free variable. If λufx · u(R) represents an ordinal it is therefore in virtue
of (14), possibly together with (11). Now if λufx · u(R) conv λufx · u(R′) then
R convR′, so that the sequence λufx ·R′(1), λufx ·R′(2),. . . in (14) is unique
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apart from conversions. Then by the induction hypothesis the sequence α1,
α2,. . . is unique. The only ordinal that is represented by λufx · u(R) is the
upper bound of this sequence which is unique.

For the second half we use a type of argument rather different from our trans-
finite induction principle. The formulae B for which A < B form the smallest
class for which

– Suc(A) belongs to the class.

– If C belongs to the class then Suc(C) belongs to it.

– If λufx ·R(n) belongs to the class and λufx ·R(n) < λufx ·R(m)
where m, n are some positive integers then λufx · u(R) belongs
to it.

– If C belongs to the class and C convC ′ then C ′ belongs to it.


(7.6)

It will suffice to prove that the class of formulae B for which either ΞB does
not exist or ΞA < ΞB satisfies the conditions (7.6). Now

ΞSuc(A) = ΞA + 1 > ΞA
ΞSuc(C) > ΞC > ΞA if C is in the class.

If Ξλufx·R(n) does not exist then Ξλufx·u(R) does not exist and therefore λufx ·
u(R) is in the class. If Ξλufx·R(n) exists and is greater than ΞA and λufx·R(n) <
λufx ·R(m) then

λufx · u(R) > λufx ·R(n) > ΞA

so that λufx · u(R) belongs to the class.

Proof of (iv). We prove this by induction with respect to A. Take ϕ(A) to be
‘whenever B < A and C < A then B < C or C < B or B convC’. ϕ(U) follows
from the fact that we never have B < U . If we have ϕ(A) and B < Suc(A) then
either B < A or B convA; for we can find D so that B < D, and D < Suc(A)
can be proved without appealing either to (1) or (5); (4) does not apply so
we must have D convA. Then if B < Suc(A) and C < Suc(A) we have four
possibilities
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B convA, C convA

B convA, C < A

B < A, C convA

B < A, C < A

In the first case B convC, in the second C < B, in the third B < C and in the
fourth the induction hypothesis applies.

Now suppose that λufx ·R(n) is a C-K ordinal formula, λufx ·R(n) < λufx ·
R(S(n)) and ϕ(R(n)), for each positive integer n, and A conv λufx ·u(R). Then
B < A this means that B < λufx ·R(n) for some n; we have also C < A then
B < λufx · R(n′), C < λufx · R(n′) for some n′. Thus for these B, C the
required result follows from ϕ(λufx ·R(n′)).

Proof of (v). The conditions (C), (D) imply that the classes of interconvertible
formulae B, B < A are well ordered by the relation ‘<’. We prove (v) by
(ordinary) transfinite induction with respect to the order type α of the series
formed by these c1asses (α is in fact the solution of the equation 1 + α = ΞA
but we do not need this). We suppose then that (v) is true for all other order
types less than α. If E < A then E satisfies the conditions of (v) and the
corresponding order type is smaller: E is therefore a C-K ordinal formula. This
expresses all consequences of the induction hypothesis that we need. There are
three cases to consider:

(x) α = 0

(y) α = β + 1

(z) α is neither of the forms (x), (y).

In case (x) use must have A convU on account of (A). In case (y) there is a
formula D such that D < A, and B 6 D whenever B < A. The relation D < A

must hold in virtue either or (1), (2), (3), or (4). It cannot be in virtue of (4)
for then there would be B, B < A, D < B contrary to (C) taken in conjunction
with the definition of D. If it is in virtue of (3) then α in the upper bound of
a sequence α1, α2,. . . of ordinals, which are increasing an account of (iii) and
the conditions λufx · R(n) < λufx · R(S(n)) in (3). This is inconsistent with
α = β+1. This means that (2) applies (after we have eliminated (1) by suitable
conversions on A, D) and we see that A conv Suc(D); but since D < A, D is a
C-K ordinal formula, and A must therefore be a C-K ordinal formula by (8).
Now take case (z). It is impossible that A be of form Suc(D), for then we should
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have B < D whenever B < A which would mean that we had case (y). Since
U < A there must be an F such that F < A is demonstrable either by (2) or
by (3) (after a possible conversion on A); it must of course be demonstrable
by (3). Then A is of form λufx · u(R).

By (3), (B) we see that λufx · R(n) < A for each positive integer n; each
λufx · R(n) is therefore a C-K ordinal formula. Applying (9), (B) we see
that A is a C-K ordinal formula.

Proof of (vi). To prove the first half it suffices to find a method whereby from
a C-K ordinal formula A we can find the corresponding ordinal formula Ω. For
then there is a formula H1 such that H1(a) conv p if a is the GR of A and p

that of Ω. H is then to be defined by

H → λa · form(H1(Gr(a)))

The method for finding Ω may be replaced by a method of finding Ω(m,n)
given A and any two positive integers m, n. We shall arrange the method so
that whenever A is not an ordinal formula either the calculation of the values
does not comes to an end or else the values are not consistent with Ω being an
ordinal formula. In this way we can prove the second half of (vi).

Let Ls be a formula such that Ls(A) enumerates the classes of formulae B,
B < A (i.e. if B < A there is one and only one positive integer n for which
Ls(A,n) convB. Then the rule for finding the value of Ω(m,n) is as follows:

1) First determine whether U 6 A and whether A is convertible
to the form r(Suc, U). This comes to an end if A is a C-K ordinal
formula.

2) If A conv r(Suc, U) and either m > r + 1 or n > r + 1 then the
value is 4. If m < n 6 r + 1 the value is 2. If n < m 6 r + 1 the
value is 1. If m = n 6 r + 1 the value is 3.

3) If A is not convertible to this form we determine whether either A
or Ls(A,m) is convertible to the form λufx · u(R) and if either of
them is we verify that λufx ·R(n) < λufx ·R(S(n)). We shall even-
tually comes to an affirmative answer if A is a C-K ordinal formula.
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4) Having checked this we determine of m, n whether Ls(A,m) <
Ls(A,n), Ls(A,n) < Ls(A,m), or m = n, and the value is to be
accordingly 1, 2, or 3.

If A is an C-K ordinal formula this process certainly comes to an end. To
see that the values so calculated correspond to an ordinal formula, and one
representing ΞA, first observe that this is so when ΞA is finite. In the other
case (iii), (iv) show that ΞB determines a one-one correspondence between the
ordinal β, 1 6 β 6 ΞA and the classes of interconvertible formulae B, B < A. If
we take G(m,n) to be Ls(A,m) < Ls(A,n) we see that G(m,n) is the ordering
relation of a series of order type14 ΞA and on the other hand that the values of
Ω(m,n) are related to G(m,n) as on page 21.

To prove the second half suppose A is not a C-K ordinal formula. Then one of
the conditions (A)-(D) in (v) must not be satisfied. If (A) is not satisfied we
shall not obtain a result even in the calculation of Ω(1, 1). If (B) is not satisfied,
for some positive integers p, q we shall have Ls(A, p) conv λufx · u(R) but not
λufx ·R(q) < λufx ·R(S(q)). Then the process of calculating Ω(p, q) will not
come to an end. In case of failure of (C) or (D) the values of Ω(m,n) may all
be calculable but conditions (b), (d), or (e) page 21 will be violated. Thus if A
is not a C-K ordinal formula then H(A) is not an ordinal formula.

I propose now to define three formulae Sum, Lim, Inf of importance in connection
with ordinal formulae. As they are comparatively simple they will for once be
given almost in full. The formula Ug is one with the property that Ug(m) is
convertible to the formula representing the largest odd integer dividing m: it is
14The order type is β where 1 + β = ΞA but β = ΞA since ΞA is infinite.
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not given in full. P is the predecessor function, P (S(m)) convm.

Al → λpxy · p(λguv · g(v, u), λuv · u(I, v), x, y)

Hf → λm · P (m(λguv · g(v, S(u)), λuv · v(I, u), 1, 2))

Bd → λww′aa′x · Al(λf · w(a, a, w′(a′, a′, f)), x, 4)

Sum → λww′pq · Bd(w,w′,Hf(p),Hf(q),

Al(p,Al(q, w′(Hf(p),Hf(q))), 1),

Al(q, 2, w(Hf(p),Hf(q))))

Lim → λzpq · {λab · Bd(z(a), z(b),Ug(p),Ug(q),

Al(Dt(a, b) + Dt(b, a),Dt(a, b), z(a,Ug(p),Ug(q))))}

(ω(2, p), ω(2, q))

Inf → λwapq · Al(λf · w(a, p, w, (a, q, f)), w(p, q), 4)

The essential properties of these formulae are described by

{
Al(2r − 1,m, n) conv m

Al(2r,m, n) conv n{
Hf(2m) conv m

Hf(2m− 1) conv m
Bd(Ω,Ω′, a, a′, x) conv 4

unless both Ω(a, a) conv 3 and Ω′(a′, a′) conv 3
in which case it is convertible to x.

If Ω, Ω′ are ordinal formulae representing α, β respectively then Sum(Ω,Ω′) is
an ordinal formula representing α + β. If Z a WFF enumerating a sequence
of ordinal formulae representing α1, α2,. . . , then Lim(Z) is an ordinal formula
representing the infinite sum α1 + α2 + α3 + . . . If Ω is an ordinal formula rep-
resenting α then Inf(Ω) enumerates a sequence of ordinal formulae representing
all the ordinals less than α without repetitions.

To prove that there is no general method for determining of a formula whether it
is an ordinal formula we use an argument akin to that leading to the Burali-Forti
paradox, but the emphasis and the conclusion are different. Let us suppose that
such an algorithm is available. This enables us to obtain a recursive enumera-
tion Ω1, Ω2,. . . of the ordinal formulae in normal form. There is a formula Z
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such that Z(n) conv Ωn. Now Lim(Z) represents an ordinal greater than any
represented by an Ωn, and has therefore been omitted from enumeration.

This argument proves more than was originally asserted. In fact it proves that
if we take any class E of ordinal formulae in normal form, such that if A is any
ordinal formula then there is a formula E representing the same ordinal as A,
then there is no method whereby one can tell whether a WFF in normal form
belongs to E.
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8 Ordinal logics

An ordinal logic is a WFF Λ such that Λ(Ω) is a logic formula whenever Ω is
an ordinal formula.

This definition is intended to bring under one heading a number of ways of
constructing logics which have recently been proposed or are suggested by recent
advances. In thin section I propose to show how to obtain some of these ordinal
logics.

Suppose we have a class W of logical systems. The symbols used in each of
these systems are the same, and a class of sequences of symbols called ‘for-
mulae’ is defined, independently or the particular system in W . The rules of
procedure of a system C define an axiomatic subset of the formulae, they are
to be described as the ‘provable formulae of C’. Suppose further that we have
a method whereby, from any system of C of W we can obtain a new system C ′,
also in W , and such that the set of provable formulae of C ′ include the provable
formulae of C (we shall be most interested in the case where they are included
as a proper subset). It is to be understood that this ‘method’ is an effective
procedure for obtaining the rules of procedure of C ′ from those of C.

Suppose that to certain of the formulae of W we make correspond number
theoretic theorems: by modifying the definition of formula we may suppose
that this is done for all formulae. We shall say that one of the systems C is
valid if the provability of a formula in C implies the truth of the corresponding
number theoretic theorem. Now let the relation of C ′ to C be such that the
validity of C implies the validity of C ′, and let there be a valid system C0 in W .
Finally suppose that given any computable sequence C1, C2,. . . of systems in W
the ‘limit system’ in which a formula is provable if and only if it is provable in
one of the systems Cj also belongs to W . These limit systems are to be are to be
regarded, not as functions of the sequence given in extension, but as functions
of the rules of formation of their terms. A sequence given in extension may be
described by various rules of formation, and there will be several corresponding
limit systems. Each of these may be described as a limit system of the sequence.

Under these circumstances we may construct an ordinal logic. Let us associate
positive integers with the systems, in such a way that to each C corresponds a
positive integer mC , and mC completely describes the rules of procedure of C.
Then there is a WFF K, such that K(mC) convmC′ for each C in W , and
there is a WFF Θ such that D(r) convmCr for each positive integer r then
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Θ(D) convmC where C is a limit system of C1, C2,. . . With each system C

of W it is possible to associate a logic formula LC : the relation between them
is that if G is a formula of W and the number theoretic theorem corresponding
to G (assumed expressed in the conversion calculus form) asserts that B is dual,
then LC(B) conv 2 if and only if G is provable in C. There will be a WFF G

such that G(mC) convLC for each C of W . Put

N → λa ·G(a(Θ,K,mC0))

I assert that N(A) is a logic formula for each C-K ordinal formula A, and that
if A < B then N(B) is more complete than N(A), provided that there are
formulae provable in C ′ but not in C for each valid C of W .

To prove this we shall show that to each C-K ordinal formula there corresponds
a unique system C[A] such that

(i) A(Θ,K,mC0
) conv mC′0

and that it further satisfies

(ii) C[U ] is a limit system of C ′0, C ′0,. . .

(iii) C[Suc(A)] is (C[A])′

(iv) C[λufx · u(R)] is a limit system of C[λufx ·R(1)], C[λufx ·R(2)],. . .

The uniqueness of the system follows from the fact that mC determines C
completely. Let us try to prove the existence of C[A] for each C-K ordinal
formula A. As we have seen (page 23) it suffices to prove

(a) C[U ] exists,

(b) if C[A] exists then C[Suc(A)] exists,

(c) if C[λufx ·R(1)], C[λufx ·R(2)],. . . exist then C[λufx · u(R)] exists.

Proof of (a). {λy ·K(y(I,mC0
))}(n) convK(mC0

) convmC′0
for all positive in-

tegers n, and therefore by the definition of Θ there is a system, which we will
call C[U ], and which is a limit system of C ′0, C ′0,. . . , satisfying

Θ(λy ·K(y(I,mC0
))) conv mC[U ]
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But on the other hand

U(Θ,K,mC0
) conv Θ(λy ·K(y(I,mC0

)))

This proves (a) and incidentally (ii).

Proof of (b).

Suc(A,Θ,K,mC0
) conv K(A(Θ,K,mC0

))

conv K(mC[A])

conv m(C[A])′

Hence C[Suc(A)] exists and is given by (iii).

Proof of (c).

{{λufx ·R}(Θ,K,mC0
)}(n) conv {λufx ·R(n)}(Θ,K,mC0

)

conv mC[λufx·R(n)]

by hypothesis. Consequently by the definition of Θ there exists C which is a
limit system of C[λufx ·R(1)], C[λufx ·R(2)],. . . and satisfies

Θ({λufx ·R}(Θ,K,mC0
)) conv mC

We define C[λufx · u(R)] to be this C. We then have (iv) and

{λufx · u(R)}(Θ,K,mC0
) conv Θ({λufx ·R}(Θ,K,mC0

))

conv mC[λufx·u(R)]

This completes the proof of the properties (i)–(iv). From (ii), (iii), (iv) and the
facts that C0 is valid and that C ′ is valid when C is valid we infer that C[A] is
valid for each C-K ordinal formula A; also that there are more formulae provable
in C[B] than in C[A] when A < B. The truth of our assertions regarding N

follows now in view of (i) and the definitions of N and G.

We cannot conclude that N is an ordinal logic, since the formulae A were C-
K ordinal formulae, but the formula H enables us to obtain an ordinal logic
from N . By the use of the formula GR we obtain a formula Tn such that
if A has a normal form then Tn(A) enumerates the GRs of the formulae into
which A is convertible. Also there is a formula Ck such that if h is a GR of a
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formula H(B) then Ck(h) convB, but otherwise Ck(h) convU . Since H(B) is
an ordinal formula only if B is a C-K ordinal formula, Ck(Tn(Ω, n)) is a C-K
ordinal formula for each ordinal formula Ω and integer w. For many ordinal
formulae it will be convertible to U , but for suitable Ω, n it will be convertible
to any given C-K ordinal formula. If we put

Λ → λwa · Γ(λn ·N(Ck(Tn(w, n)), a))

Λ will be the required ordinal logic. In fact on account of the properties of Γ,
Λ(Ω, A) will be convertible to 2 if and only if there is a positive integer n such
that

N(Ck(Tn(Ω, n)), A) conv 2

If Ω convH(B) there will be an integer n such that
Ck(Tn(Ω, n)) conv B, and then
N(Ck(Tn(Ω, n)), A) convN(B,A).

For any n, Ck(Tn(Ω, n)) is convertible to U or to some B where Ω convH(B).
Thus Λ(Ω, A) conv 2 if Ω convH(B) and N(B,A) conv 2 or if N(U,A) conv 2, but
not in any other case.

We may now specialize and consider particular classes W of systems. First let us
try to construct the ordinal logic described roughly in the introduction. For W
we take the class of systems arising from the system of Principia Mathematica15

by adjoining to it axiomatic (in the sense described in page 7) sets of axioms16

Gödel has shown that primitive recursive relations17 can be expressed by means
of formulas in P . In fact there is a rule whereby given the recursion equations
defining a primitive recursive relation we can find a formula18 U(x0, . . . , z0) such
that U[f (m1)0, . . . , f (mr)0] is is provable in P if F (m1, . . . ,mr) is true, and its
15Whitehead and Russel [19]. The axioms and rules of procedure of a similar system P will be

found in a convenient form in Gödel [8]. I shall follow Gödel. The symbols for the natural
numbers in P are 0, f0, ff0,. . . , f (n)0. . . Variables with the suffix ‘o’ stand for natural
numbers.

16It is sometimes regarded as necessary that the set of axioms used be computable, the inten-
tion being that it should be possible to verify of a formula reputed to be an axiom whether it
really is so. We can obtain the same effect with axiomatic sets of axioms in this way. In the
rules of procedure describing which are the axioms we incorporate a method of enumerating
them, and we also introduce a rule that in the main part of the deduction whenever we
write down an axiom as such we must also write down its position in the enumeration. It is
possible to verity whether this has been done correctly.

17A relation F (m1, . . . ,mr) is primitive recursive if it is the necessary and sufficient condition
for vanishing of a primitive recursive function ϕ(m1, . . . ,mr).

18Capital German letters will be used to stand for variable or undetermined formulas in P .
An expression such as U[B,L] will stand for the result of substituting B and L for x0 and y0
in U.
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negation is provable otherwise. Further there is a method by which one can tell
of a formula U[x0, . . . , z0] whether it arises from a primitive recursive relation
in this way, and by which one can find the equations which defined the relation.
Formulae of this kind will be called recursion formulae. We shall make use of a
property they have, which we cannot prove formally here without giving their
definition in full, but which is essentially trivial. Db[x0, y0] is to stand for a
certain recursion formula such that Db[f (m)0, f (n)0] is provable in P if m = 2n
and its negation is provable otherwise.

Suppose that U[x0], B[x0] are two recursion formulae. Then the theorem I am
assuming is that there is a recursion relation LU,B[x0] such that we can prove

LU,B[x0] ≡ ∃y0 : ((Db[x0, y0],U[y0]) ∨ (Db[fx0, fy0],B[y0])) (8.1)

in P .

The significant formulae in any of our extensions of P are those of the form

∀x0∃y0 : U[x0, y0] (8.2)

where U[x0, y0] is a recursion formula, arising from the relation R(m,n) let us
say. The corresponding number theoretic theorem states that for each natural
number m there is a natural number n such that R(m,n) is true.

The systems in W which are not valid are those in which a formula of the
form (8.2) is provable, but at the same time there is a natural number, m say,
such that for each natural number n, R(m,n) is false. This means to say that
∼U[f (m)0, f (n)0] is provable for each natural number n. Since (8.2) is provable
∃y0 : U[f (m)0, y0] is provable, so that

∃y0 : U[f (m)0, y0], ∼U[f (m)0, 0], ∼U[f (m)0, f0], . . . (8.3)

are all provable in the system. We may simplify (8.3). For a given m we may
prove a formula of the form U[f (m)0, y0] ≡ B[y0] in P , where B[y0] is a recursion
formula. Thus we find that the necessary and sufficient condition for a system
of W to be valid is that for no recursion formula B[x0] are all of the formulae

∃x0 : B[x0], ∼B[0], ∼B[f0], . . . (8.4)
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provable. An important consequence of this is that if

U1[x0], U2[x0], . . . , Un[x0]

are recursion formulae and

(∃x0 : U1[x0]) ∨ (∃x0 : U2[x0]) ∨ . . . ∨ (∃x0 : Un[x0]) (8.5)

in provable in C, and C is valid, then we can prove Ur[f (a)0] in C for some
natural numbers r, a, where 1 6 r 6 n. Let us define Dr to be the formula

(∃x0 : U1[x0]) ∨ . . . ∨ (∃x0 : Ur[x0])

and define E[x0] recursively by the condition that E1[x0] be U1[x0] and Er+1[x0]
be LEr,Ur+1 [x0]. Now I say that

Dr ⊃ (∃x0 : Er[x0]) (8.6)

is provable for 1 6 r 6 n. It is clearly provable for r = 1. Suppose it provable
for a given r. We can prove

∀y0∃x0 : Db[x0, y0]

and
∀y0∃x0 : Db[fx0, fy0]

from which we obtain

Er[y0] ⊃ ∃x0 : ((Db[x0, y0] · Er[y0]) ∨ (Db[x0, y0] · Ur+1[y0]))

and
Ur+1[y0] ⊃ ∃x0 : ((Db[x0, y0] · Er[y0]) ∨ (Db[x0, y0] · Ur+1[y0]))

These together with (8.1) yield

∃y0 : Er[y0] ∨ ∃y0 : Ur+1[y0] ⊃ ∃x0 : LEr,Ur+1 [x0]

which suffices to prove (8.6) for r + 1. Now since (8.5) is provable in C, ∃x0 :
En[x0] must be also, and since C is valid this means that En[f (m)0] must be
provable for some natural number m. From (8.1) and the definition of En[x0]
we see that this implies that Ur[f (a)0] is provable for some natural number a,
and integer r, 1 6 r 6 n.
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To any system C of W we can assign a primitive recursive relation PC(m,n)
with the intuitive meaning ‘m is the GR of a proof of the formula whose GR is n’.
The corresponding recursion formula is ProofC [x0, y0] (i.e. ProofC [f (m)0, f (n)0]
is provable when Pc(m,n) is true, and its negation is provable otherwise). We
can now explain what is the relation of a system C ′ to its predecessor C. The
set of axioms which we adjoin to P to obtain C ′ consists of those adjoined in
obtaining C, together with all formulae of the form

∃x0 : ProofC

[
x0, f

(m)0
]
⊃ f (8.7)

where m is the GR of f.

We wish to show that a contradiction can be obtained by assuming C ′ to be
invalid but C to be valid. Let us suppose that a set of formulae of form (8.4)
is provable in C ′. Let U1, U2,. . . ,Uk be those axiom of C ′ of form (8.7) which
are used in the proof of ∃x0 : B[x0]. We may suppose that none of them are
provable in C. Then by the deduction theorem we see that

(U1 · U2 . . .Uk) ⊃ ∃x0 : B[x0] (8.8)

is provable in C. Let Ul be ∃x0 : ProofC [x0, f
(mk)0] ⊃ fl. Then from (8.8) we

find that

∃x0 : ProofC

[
x0, f

(m1)0
]
∨ . . . ∨ ∃x0 : ProofC

[
x0, f

(mk)0
]
∨ ∃x0 : B[x0]

is provable in C. It follows from a result we have just proved that either B[f (c)0]
is provable for some natural number c, or else ProofC [f (n)0, f (ml)0] is provable
in C for some natural number u and some l, 1 6 l 6 k; but this would mean
that fl was provable in C (this is one of the points where we assume the validity
of C) and therefore also in C ′, contrary to hypothesis. Then B[f (c)0] must be
provable in C; but we are also assuming ∼B[f (c)0] is provable in C ′. There is
therefore a contradiction in C ′.

Let us suppose that the axioms U′1,. . . , U′k′ of form (8.7) when adjoined to C
suffice to obtain the contradiction and that none of these axioms are provable
in C. Then

∼U′1 ∨ ∼U′2 ∨ . . . ∨ ∼U′k′

is provable in C, and if U′l is ∃x0 : ProofC [x0, f
(m′l)0] ⊃ fl then

∃x0 : ProofC

[
x0, f

(m′1)0
]
∨ . . . ∨ ∃x0 : ProofC

[
x0, f

(m′
k′ )0
]
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is provable in C. But by repetition of a previous argument this means that U′l
is provable for some l, 1 6 l 6 k′ contrary to hypothesis. This is the required
contradiction.

We may now construct an ordinal logic in the manner described on pages 28–
35. But let us carry out the construction in rather more detail, and with some
modifications appropriate to the particular case. Each system C of our set W
may be described by means of a WFF MC which enumerates the GRs of the
axioms of C. There is a WFF E such that if a is the GR of some proposition f

then E(MC , a) is convertible to the GR of

∃x0 : Proof
[
x0, f

(a)0
]
⊃ f

If a is not the GR of any proposition in P then E(MC , a) is to be convertible
to the GR of 0 = 0. From E we obtain a WFF K such that K(MC , 2n +
1) convMC(n), K(MC , 2n) conv E(MC , n). The successor system C ′ is defined
by K(MC) convMC′ . Let us choose a formula G such that G(MC , A) conv 2 if
and only if the number theoretic theorem equivalent to ‘A is dual’ is provable
in C. Then we define ΛP by

ΛP → λwa · Γ(λy ·G(Ck(Tn(ω, y), λmn ·m(ω(2, n), ω(3, n)),K,MP )), a)

This is an ordinal logic provided that P is valid.

Another ordinal logic of this type has in effect been introduced by Church19.
Superficially this original logic seems to have no more in common with ΛP
than they both arise by the method we have described which uses C-K ordinal
formulae. The initial systems are entirely different. However, in the relation
between C and C ′ there is an interesting analogy. In Church’s method the
step from C to C ′ is performed by means of subsidiary axioms of which the
most important (Church [2], page 88, lm) is almost a direct translation into his
symbolism of the rule that we may take any formula of form (8.4) as an axiom.
There are other extra axioms, however, in Church’s system, and it is therefore
not unlikely that it is in some sense more complete than ΛP .

There are other types of ordinal logic, apparently quite unrelated to the type
we have so far considered. I have in mind two types of ordinal logic, both of
which can be best described directly in terms of ordinal formulae without any
19In outline Church [2], pages 279–280. In greater detail Church [2], Chapter X.
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reference to C-K ordinal formulae. I shall describe here a specimen of one type,
suggested by Hilbert (Hilbert, [10], 183ff), and leave the other type over to §12.

Suppose we have selected a particular ordinal formula Ω. We shall construct a
modification PΩ of the system P of Gödel (see footnote 16). We shall say that
a natural number n is a type if it is either even or 2p− 1 where Ω(p, p) conv 3.
The definition of a variable in P is to be modified by the condition that the only
admissible subscripts are to be the types in our sense. Elementary expressions
are then defined as in P : in particular the definition of an elementary expression
of type 0 is unchanged. An elementary formula is defined to be a sequence of
symbols of the form UmUn where Um, Un are elementary expressions of types m,
n satisfying one of the conditions (a), (b), (c).

(a) m and n are both even and m exceeds n,

(b) m is odd and n is even,

(c) m = 2p− 1, n = 2q − 1 and Ω(p, q) conv 1.

With these modifications the formal development of PΩ is the same as that of P .
We wish however to have a method of associating number theoretic theorems
with certain of the formulae of PΩ. We cannot take over directly the association
we used in P . Suppose G is a formula in P interpretable as a number theoretic
theorem in the way we described when constructing ΛP , page 36. Then if every
type suffix in G is doubled we shall obtain a formula in PΩ which is to be
interpreted as the same number theoretic theorem. By the method of § 6 we
can now obtain from PΩ a formula LΩ which is a logic formula of PΩ is valid; in
fact given Ω there is a method of obtaining LΩ, so that there is a formula ΛH
such that ΛH(Ω) convLΩ for each ordinal formula Ω.

Having now familiarized ourselves with ordinal logics by means of these exam-
ples we may begin to consider general questions concerning them.
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9 Completeness questions

The purpose of introducing ordinal logics was to avoid as far as possible the ef-
fects of Gödel’s theorem. It is a consequence of this theorem, suitably modified,
that is is impossible to obtain a complete logic formula, or (roughly speaking
now) a complete system of logic. We are able, however, from a given system
to obtain a more complete one by the adjunction as axioms of formulae, seen
intuitively to be correct, but which Gödel theorem shows are unprovable20 in
the original system; from this we obtained a yet more complete system by a
repetition of the process and so on. We found that the repetition of the process
gave us a new system for each C-K ordinal formula. We should like to know
whether this process suffices, or whether the system should be extended in other
ways as well. If it were possible to tell of a WFF in normal form whether it
was an ordinal form we should know for certain that it was necessary to extend
in other ways. In fact for any ordinal form Λ it would then be possible to find
a single logic formula L such that if Λ(Ω, A) conv 2 for some ordinal formula Ω
then L(A) conv 2. Since L must be incomplete there must be formulae A for
which Λ(Ω, A) is not convertible to 2 for any ordinal formula Ω. However, in
view of the fact proved in § 7, that there is no method of determining of a for-
mula in normal form whether it is an ordinal formula, the case does not arise,
and there is still a possibility that some ordinal logic may be complete in some
sense. There is quite a natural way of defining completeness.

Definition of completeness of ordinal logic. We say that an ordinal logic Λ is
complete if for each dual formula A there is an ordinal formula ΩA such that
Λ(ΩA) conv 2.

As has been explained in § 2, the reference in the definition to the existence
of ΩA for each A is to be understood in the same naive way as any reference to
existence in mathematics.

There is room for modification in this definition: we might require that there be
a formulae X such that X(A) conv ΩA, X(A) being an ordinal formula when-
ever A is dual. There is no need, however, to discuss the relative merits of
these two definitions, because in all cases where we prove an ordinal logic to
be complete we shall prove it to be complete even in the modified sense, but in
cases where we prove an ordinal logic to be incomplete we use the definition as
it stands.
20In the case of P we adjoin all the axioms ∃x0 : ProofP [x0, f

(m)0] where m is the GR of f,
some of which the Gödel theorem shows to be unprovable in P .
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In the terminology of § 6 Λ is complete if the class of logics Λ(Ω) is complete
when Ω runs through all ordinal formulae.

There is another completeness property which is related to this one. Let us for
the moment say that an ordinal logic Λ is all inclusive if to each logic formula L
there corresponds an ordinal formula Ω(L) such that Λ(Ω(L)) is as complete
as L. Clearly every all inclusive ordinal logic is complete, for if A is dual then
δ(A) is a logic with A in its extent. But if Λ is complete and

Ai → λkωa · Γ
(
λr · δ(4, δ(2, k(ω, V (Nm(r)))) + δ(2,Nm(r, a)))

)
then Ai(Λ) is an all inclusive ordinal logic. For if A is in the extent of Λ(Ω) for
each A, and we put Ω(L) → ΩV (L) then I say that if B is an extent of L
it must be in the extent of Ai(Λ,Ω(L)). In fact Ai(Λ,ΩV (L), B) conv Γ(λr ·
δ(4, δ(2,Λ(ΩV (L), V (Nm(r)))) + δ(2,Nm(r,B)))).

For suitable n, Nm(n) convL and then

Λ(ΩV (L), V (Nm(n))) conv 2

Nm(n,B) conv 2

and therefore by the properties of Γ, δ

Ai(Λ,ΩV (L), B) conv 2

Conversely Ai(Λ,ΩV (L), B) can only be convertible to 2 if both Nm(N,B) and
Λ(ΩV (L), V (Nm(n))) are convertible to 2 for some positive integer n; but if
Λ(ΩV (L), V (Nm(n))) conv 2 then Nm(n) must be a logic and since Nm(n,B) conv 2,
B must be dual.

It should be noticed that our definitions of completeness refer only to number
theoretic theorems. Although it would be possible to introduce formulae anal-
ogous to ordinal logics which would prove more general theorems than number
theoretic ones, and have a corresponding definition of completeness, yet if our
theorems are too general we shall find that our (modified) ordinal logics are
never complete. This follows from the argument of § 4. If our ‘oracle’ tells us,
not whether any given number theoretic statement is true, but whether a given
formula is an ordinal formula, the argument still applies, and we find there are
classes of problems which cannot be solved by a uniform process even with the
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help of this oracle. This is equivalent to saying that there is no ordinal logic of
the proposed modified type which is complete with respect to these problems.
This situation becomes more definite if we take formulae satisfying conditions
(a)–(e), (f ′) (as described at the end of § 12) instead of ordinal formulae; it is
then not possible for the ordinal logic to be complete with respect to any class
of problems more extensive than the number theoretic problems.

We might hope to obtain some intellectually satisfying system of logical in-
ference (for the proof of number theoretic theorems) with some ordinal logic.
Gödel’s theorem shows that such a system cannot be wholly mechanical, but
with a complete ordinal logic we should be able to confine the non-mechanical
steps entirely to verifications that particular formulae are ordinal formulae.

We might also expect to obtain an interesting classification of number theoretic
theorems according to ‘depth’. A theorem which required an ordinal α to prove
it would be deeper than one which could be proved by use of an ordinal β less
than α. However, this presupposes more than is justified. We define

Definition of invariance of ordinal logics. An ordinal logic Λ is said to be invari-
ant up to an ordinal α whenever Ω, Ω′ are ordinal formulae representing the
same ordinal less than α, the extent of Λ(Ω) is identical with the extent of Λ(Ω).
An ordinal logic is invariant if it is invariant up to each ordinal represented by
an ordinal formula.

Clearly the classification into depths presupposes that the ordinal logic used is
invariant.

Among the questions we should now like to ask are

(a) Are there any complete ordinal logics?

(b) Are there any complete invariant ordinal logics?

To these we might have added ‘are all ordinal logics complete?’; but this is
trivial; in fact there are ordinal logics which do not suffice to prove any number
theoretic theorems whatever.

We shall now show that (a) must be answered affirmatively. In fact we can
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write down a complete ordinal logic at once.

Od → λa ·
{
λfmn · Dt(f(m), f(n))

}(
λs · P(λr · r(I, a(s)), 1, s)

)
and

Comp → λwa · δ(ω,Od(a))

I shall show that Comp is a complete ordinal logic.

In fact if Comp(Ω, A) conv 2, then

Ω conv Od(A)

conv λmn · Dt
(
P (λr · r(I, A(m)), 1,m)), P(λr · r(I, A(n)), 1, n)

)
Ω(m,n) has a normal form if Ω is an ordinal formula, so that then P(λr ·
r(I, A(m)), 1) has a normal form; this means that r(I, A(m)) conv 2 some r, i.e.
A(m) conv 2. Thus if Comp(Ω, A) conv 2 and Ω is an ordinal formula then A

is dual. Comp is therefore an ordinal logic. Now suppose conversely that A
is dual. I shall now show that Od(A) is an ordinal formula representing the
ordinal ω. In fact

P(λr · r(I, A(m)), 1,m) conv P(λr · r(I, 2), 1,m)

conv 1(m)

conv m

Od(A,m, n) conv Dt(m,n)

i.e. Od(A) is an ordinal formula representing the same ordinal as Dt. But

Comp(Od(A), A) conv δ(Od(A),Od(A)) conv 2

This proves the completeness of Comp. Of course Comp is not the kind of
complete ordinal logic that we should really want to use. The use of Comp does
not make it any easier to see that A is dual. In fact if we really want to use an
ordinal logic a proof of completeness for that particular ordinal logic will be of
little value; the ordinals given by the completeness proof will not be ones which
can easily be seen intuitively to be ordinals. The only value a completeness
proof of this kind would have would be to show that if any objection is to be
raised against an ordinal logic it must be on account of something more subtle
than incompleteness.
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The theorem of completeness is also unexpected in that the ordinal formulae
used are all formulae representing ω. This is contrary to our intentions in
constructing ΛP for instance; implicitly we had in mind large ordinals expressed
in a simple manner. Here we have small ordinals expressed in a very complex
and artificial way.

Before trying to solve the problem (b), let us see how far ΛP and ΛT are
invariant. We should certainly not expect ΛP to be invariant, as the extent
of ΛP (Ω) will depend on whether Ω is convertible a formula of form H(A):
but suppose we call an ordinal logic Λ C-K invariant up to α if the extent of
Λ(H(A)) is the same as the extent of Λ(H(B)) whenever A and B are C-K
ordinal formulae representing the same ordinal less than α. How far is ΛP C-K
invariant? It is not difficult to see that it is C-K invariant up to any finite
ordinal, that is to any up to ω. It is also C-K invariant up to ω+ 1, and follows
from the fact that the extent of ΛT (H(λufx ·u(R))) is the set theoretic sum of
the extents of

ΛT (H(λufx ·R(1))), ΛT (H(λufx ·R(2))), . . .

However, there is no obvious reason to believe that it C-K invariant up to
ω + 2, and in fact it is demonstrable that this is not the case (see the end of
this section). Let us try to see what happens if we try to prove that the extent
of ΛT (H(Suc(λufx · u(R1)))) is the same as the extent of ΛP (H(Suc(λufx ·
u(R2)))) where λufx · u(R1) and λufx · u(R2) are two C-K ordinal formulae
representing ω. We should have to prove that a formula interpretable as a
theorem of number theory is provable in C[Suc(λufx ·u(R1))] if and only if it is
provable in C[Suc(λufx · u(R2))]. Now C[Suc(λufx · u(R1))] is obtained from
C[λufx · u(R1)] by adjoining all axioms of form

∃x0 : ProofC[λufx·u(R1)][x0, f
(m)0] ⊃ f (9.1)

where m is the GR of f, and C[Suc(λufx · u(R1))] is obtained from C[λufx ·
u(R2)] by adjoining all axioms of form

∃x0 : ProofC[λufx·u(R2)][x0, f
(m)0] ⊃ f (9.2)

The axioms which must be adjoined to P to obtain C[λufx · u(R1)] are es-
sentially the same as those which must be adjoined to obtain C[λufx · u(R2)];
however the rules of procedure which have to be applied before these axioms
can be written down will in general be quite different in the two cases. Conse-
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quently (9.1) and (9.2) will be quite different axioms, and there is no reason to
expect their consequences to be the same. A proper understanding of this will
make our treatment of question (b) much more intelligible. See also footnote.

Now let us turn to ΛT . This ordinal logic is invariant. Suppose Ω, Ω′ represent
the same ordinal, and suppose we have a proof of a number theoretic theorem G

in PΩ. The formula expressing the number theoretic theorem does not involve
any odd types. Now there is a one-one correspondence between the odd types
such that if 2m−1 corresponds to 2m′−1 and 2n−1 to 2n′−1 then Ω(m,n) conv 2
implies Ω′(m′, n′) conv 2. Let us modify the odd type subscripts occurring in
the proof of G, replacing each by its mate in the one-one correspondence. There
results a proof in PΩ′ with the same end formula G. That is to say that if G is
provable in PΩ it is provable in PΩ′ : ΛT is invariant.

The question (b) must be answered negatively. Much more can be proved, but
we shall first prove an even weaker result which can be established very quickly,
in order to illustrate the method.

I shall prove that an ordinal logic Λ cannot be invariant and have the property
that the extent of Λ(Ω) is a strictly increasing function of the ordinal represented
by Ω. Suppose Λ has these properties; we shall obtain a contradiction. Let A
be a WFF in normal form and without free variables, and consider the process
of carrying out conversions on A(1) until we have shown it convertible to 2,
than converting A(2) to 2, then A(3) and so on; suppose that after r steps we
are still performing the conversion on A(mr). There is a formula Jh such that
Jh(A, r) convmr for each positive integer r. Now let Z be a formula such that
for each positive integer n, Z(n) is an ordinal formula representing ωn, and
suppose B is a member of the extent of Λ(Suc(Lim(z))) but not of the extent
of Λ(Lim(z)). Put

K? → λa · Λ(Suc(Lim(λr · Z(Jh(a, r)))), B)

then K? is a complete logic. For if A is dual, then

Suc(Lim(λr · Z(Jh(A, r))))

represents the ordinal ωω + 1, and therefore K?(A) conv 2; but if A(n) is not
convertible to 2, then Suc(Lim(λr · Z(Jh(A, r)))) represents an ordinal not ex-
ceeding ωm + 1, and K?(A) is therefore not convertible to 2. Since there are no
complete logic formulae this proves our assertion.
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Is may now prove more powerful results.

Incompleteness theorems. (A) If an ordinal logic Λ is invariant up to an ordi-
nal α, then for any ordinal formula Ω representing an ordinal β, β < α, the
extent of Λ(Ω) is contained in the (set-theoretic) sum of the extents of the logics
∆(P ) where P is finite.

(B) If an ordinal logic Λ is C-K invariant up to an ordinal α, then for any C-K
ordinal formula A representing an ordinal β, β < α, the extent of Λ(H(A)) is
contained in the (set-theoretic) sum of the extent of the logics Λ(H(F )) where F
is a C-K ordinal formula representing an ordinal less than ω2.

Proof of (A). It suffices to prove that if Ω represents an ordinal γ, ω 6 γ < α,
then the extent of Λ(Ω) is contained in the set theoretic sum of the extents of
the logics Λ(Ω′) where Ω′ represents an ordinal less than γ. The ordinal γ must
be of the form γ0+ρ where ρ is finite and represented by P say, and γ0 is not the
successor of any ordinal and is not less than ω. There are two cases to consider:
γ0 = ω and γ0 > 2ω. In each of them we shall obtain a contradiction from
the assumption that there is a WFF B such that Λ(Ω, B) conv 2 whenever Ω
represents γ, but is not convertible to 2 if Ω represents a smaller ordinal. Let
us take first the case γ0 > 2ω. Suppose γ0 = ω + γ1, and that Ω1 is an ordinal
formula representing γ1. Let A be any WFF with a normal form and no free
variables, and let Z be the class of those positive integers which are exceeded
by all integers n for which A(n) is not convertible to 2.

Let E be the class of integers 2p such that Ω(p, n) conv 2 for some n belonging
to Z. The class E, together with the class Q of all odd integers is constructively
enumerable. It is evident that the class can be enumerated with repetitions,
and since it is infinite the required enumeration can be obtained by striking out
the repetitions.

There is, therefore, a formula En such that En(Ω, A, r) runs through the for-
mulae of the class E + Q without repetitions as r runs through the positive
integers. We define

Rt → λwamn · Sum(Dt, w,En(w, a,m), En(w, a, n))

Then Rt(Ω, A) is an ordinal formula which represents γ0 if A is dual, but a
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smaller ordinal otherwise. In fact

Rt(Ω1, A,m, n) conv {Sum(Dt,Ω1)}(En(Ω1, A,m), En(Ω1, A, n))

Now if A is dual E +Q includes all integers m for which {Sum(Dt,Ω1)}(m,m)
conv 3. Putting “En(Ω1, A, p) conv q” for M(p, q) we see that condition (7.4) is
satisfied, so that Rt(Ω1, A) is an ordinal formula representing γ0. But if A is not
dual the set E+Q consists of all integersm for which {Sum(Dt,Ω1)}(m, r) conv 2,
where r depends only on A. In this case Rt(Ω1, A) is an ordinal formula rep-
resenting the same ordinal as Inf(Sum(Dt,Ω1), r) and this is smaller than γ0.
Now consider K:

K → λa · Λ(Sum(Rt(Ω1, A), P ), B)

If A is dual, K(A) is convertible to 2, since Sum(Rt(Ω1, A), P ) represents γ. But
if A is not dual it is not convertible to 2, for Sum(Rt(Ω1, A), P ), then represents
an ordinal smaller than γ. In K we therefore have a complete logic formula,
which is impossible.

Now we take the case γ0 = ω. We introduce a WFF Mg, such that it n is the
D.N. of a computing machineM, and if by themth complete configuration ofM
the figure 0 has been printed then Mg(n,m) is convertible to λpq ·Al(4, (P, 2p+
2q), 3, 4) (which is an ordinal formula representing the ordinal 1), but if 0 has
not been printed it is convertible to λpq · p(q, I, 4) (which represents 0). Now
consider M .

M → λn · Λ(Sum(Lim(Mg(n)), P ), B)

If the machine never prints 0 then Lim(λr ·Mg(n, r)) represents ω and
Sum(Lim(Mg(n)), P ) represents γ. This means that Mg(n) is convertible to 2.
If, however M prints 0, Sum(Lim(Mg(n)), P ) represents a finite ordinal and
M(n) is not convertible to 2. In M we therefore have a means of determining
of a machine whether it ever prints 0, which is impossible21. (Turing [17], § 8).
This completes the proof of (A).

Proof of (B). It suffices to prove that if C represents an ordinal γ, ω2 6 γ < α

then the extent of Λ(H(C)) is included in the set-theoretic sum of the extents of
Λ(H(G)) where G represents an ordinal less than γ. We obtain a contradiction
from the assumption that there is a formula B which is in the extent of Λ(H(G))
if G represents γ, but not if it represents any smaller ordinal. The ordinal γ
21This part of the argument can equally well be based on the impossibility of determining of

two WFF whether they are inter-convertible. (Church [3], page 565.)
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is of the form δ + ω2 + ξ where ξ < ω2. Let D be a C-K ordinal formula
representing δ and Q one representing ξ.

We now define a formula Hg. Suppose A is a WFF in normal form and without
free variables; consider the process of carrying out conversions on A(1) until it
is brought into the form 2, than converting A(2) to 2, then A(3), and so on.
Suppose that at the rth step of this process we are doing the nrth step in the
conversion of A(mr). Thus. for instance if A(3) be not convertible to 2, mr can
never exceed 3. Then Hg(A, r) is to be convertible to λf · f(mr, nr) for each
positive integer r. Put

Sq → λαmn · n(Suc,m(λaufx · u(λy · y(Suc, a, n, f, x), α(u, f, x))

M → λaufx ·Q(u, f, u(λy ·Hg(a, y, Sq(D))))

K1 → λa · Λ(M(a), B)

then I say that K1 is a complete logic formula. Sq(D,m, n) is a C-K ordinal
formula representing δ + mω + n and therefore Hg(A, r, Sq(D)) represents an
ordinal ζr which increases steadily with increasing r, and tends to the limit
δ + ω2 if A is dual. Further Hg(A, r, Sq(D)) < Hg(A,S(r), Sq(D)) for each
positive integer r. λufx · u(λy · Hg(A, y,Sq(D))) is therefore a C-K ordinal
formula and represents the limit of the sequence ζ1, ζ2, ζ3. . . This is δ+ω2 if A
is dual, but a smaller ordinal otherwise. Likewise M(A) represents γ if A is
dual, but a smaller ordinal otherwise. The formula B therefore belongs to the
extent of Λ(H(M(A))) if and only if A is dual, and this implies that K1 is a
complete logic formula as was asserted. But this is impossible and we have the
required contradiction.

As a corollary to (A) we see that ΛH is incomplete and in fact that the extent
of ΛH(Dt) contains the extent of ΛH(Ω) for any ordinal formula Ω. This result,
suggested to me first by the solution of question (b), may also be obtained
more directly. In fact if a number theoretic theorem can be proved in any
particular PΩ it can be proved in Pλmn·m(n,I,4). The formulae describing number
theoretic theorems in P do not involve more than a finite number of types, type 5
being the highest necessary. The formulae describing the number theoretic
theorems in any PΩ will be obtained by doubling the type subscripts. Now
suppose we have a proof of a number theoretic theorem G in PΩ and that the
types occurring in the proof are among 0, 2, 4, 6, 8, 10, t1, t2, t3,. . . , tR. We
may suppose they have been arranged with all the even types preceding all the
odd types, the even types in order of magnitude and the type 2m− 1 preceding
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2n− 1 if Ω(m,n) conv 2. Now let each tr be replaced by 10 + 2r throughout the
proof of G. We obtain a proof of G in Pλmn·m(n,I,4).

As with problem (a) the solution of problem (b) does not require the use of
high ordinals (e.g. if we make the assumption that the extent of Λ(Ω) is a
steadily increasing function of the ordinal represented by Ω we do not have to
consider ordinals higher than ω + 2). However, if we restrict what we are to
call formulae in some way we shall have corresponding modified problems (a)
and (b); the solutions will presumably be essentially the same but will involve
higher ordinals. Suppose for example that Prod is a WFF with the property that
Prod(Ω1,Ω2) is an ordinal formula representing α1α2 when Ω1, Ω2 are ordinal
formulae representing α1, α2 respectively and suppose we call a WFF a l-ordinal
formula when it is convertible to the form Sum(Prod(Ω,Dt), P ) where Ω, P are
ordinal formulae of which P represents a finite ordinal. We may define l-ordinal
logics, l-completeness and l-invariance in an obvious way, and obtain a solution
of problem (b) which differs from the solution in the ordinary case in that the
ordinals less than ω take the place of the finite ordinals. More generally the
cases I have in mind will be covered by the following theorem.

Suppose we have a class V of formulae representing ordinals in some manner
we do not propose to specify definitely, and a subset22 U of the class such that

(i) There is a formula Φ such that if T enumerates a sequence of members of U
representing an increasing sequence of ordinals, then Φ(T ) is a member
of U representing the limit of the sequence.

(ii) There is a formula E such that E(m,n) is a member of U for each pair of
positive integers m, n and if it represents εm,n then εm,n < εm′,n′ if either
m < m′ or m = m′, n < n′.

(iii) There is a formula G such that if A is a member of U then G(A) is a
member of U representing a larger ordinal than does A, and such that
G(E(m,n)) always represents an ordinal not larger than εm,n+1.

We define a V-ordinal logic to be a WFF Λ such that Λ(A) is a logic whenever A
belongs to V . Λ is V-invariant if the extent of Λ(A) depends only on the ordinal
represented by A. Then it is not possible for a V-ordinal logic Λ to be V-
invariant and have the property that if C1 represents a greater ordinal than C2,
22The subset U wholly supersedes V in what follows. The introduction of V serves to empha-

sise the fact that the set of ordinals represented by members of U may have gaps.

50



(C1 and C2 both being members of U) then the extent of Λ(C1) is greater than
the extent of Λ(C2).

We suppose the contrary. Let B be a formula belonging to the extent of
Λ(G(Φ(λr · E(r, 1)))) but not to the extent of Λ(Φ(λr · E(r, 1))). Suppose
that our assertion is false and that

K ′ → λa · Λ(Θ(λr ·Hg(a, r, E)), B).

Then K ′ is a complete logic. For

Hg(A, r,E) conv E(mr, nr).

E(mr, nr) is a sequence of V-ordinal formulae representing an increasing se-
quence of ordinals. Their limit is represented by Θ(λr · Hg(A, r,E)); let us
see what this limit is. First suppose A is dual: then mr tends to infinity
as r tends to infinity, and Θ(λr · Hg(A, r,E)) therefore represents the same
ordinal as Θ(λr · E(r, 1)). In this case we must have K ′(A) conv 2. Now sup-
pose A is not dual: mr is eventually equal to some constant number, a say,
and Θ(λr ·Hg(A, r,E)) represents the same ordinal as Θ(λr ·E(A, r)) which is
smaller than that represented by Θ(λr ·E(r, 1)). B cannot therefore belong to
the extent of Θ(λr · Hg(A, r,E)), and K(A) is not convertible to 2. We have
proved that K ′ is a complete logic which is impossible.

This theorem can no doubt be improved in many ways. However, it is suffi-
ciently general to show that, with almost any reasonable notation for ordinals,
completeness is incompatible with invariance.

We can still give a certain meaning to the classification into depths with highly
restricted kinds of ordinals. Suppose we take a particular ordinal logic Λ and a
particular ordinal formula Ψ representing the ordinal α say (preferably a large
one), and we restrict ourselves to ordinal formulae of the form Inf(Ψ, a). We
shall then have a classification into depths, but the extents of all the logics we
so obtain will be contained in the extent of a single logic.

We now attempt a problem of a rather different character, that of the complete-
ness of ΛP . It is to be expected that this ordinal logic is complete. I cannot at
present give a proof of this, but I can give a proof that it is complete as regards
a simpler type of theorem than the number theoretic theorems viz. those of
form ‘θ(x) vanishes identically’ where θ(x) is primitive recursive. The proof will
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have to be much abbreviated as we do not wish to go into the formal details of
the system P . Also there is a certain lack of definiteness in the problem as at
present stated, owing to the fact that the formulae G, E, MP were not com-
pletely defined. Our attitude here is that it is open to the sceptical reader to
give detailed definitions for these formulae and then verify that the remaining
details of the proof can be filled in using his definition. It is not asserted that
these details can be filled in whatever be the definitions of G, E, MP consistent
with the properties already required of then, only that it is so with the more
natural definitions.

I shall prove the completeness theorem in the following form. If B[x0] is a
recursion formula and B[0], B[f0],. . . are all provable in P , then there is an
C-K ordinal formula A such that ∀x0 : B[x0] is provable in the system PA of
logic obtained from P by adjoining as axioms all formulae whose GR are of the
form

A(λmn ·m(ω(2, n), ω(3, n)),K,MP , r)

(provided they represent propositions)

First let us define the formula A. Suppose D is a WFF with the property that
D(n) conv 2 if B[f (n−1)0] is provable in P , but D(n) conv 1 if ∼B[f (n−1)0] is
provable in P (P being assumed consistent). Let Θ be defined by

Θ → {λuv · v(v(v, u))}(λvu · v(v(v, u)))

and let V be a formula with the properties

V (2) conv λu · u(Suc, U)

V (1) conv λu · u(I,Θ(Suc))

The existence of such a formula is established in Kleene [12], corollary on
page 220. Now put

A? → λufx · u(λy · V (D(y), y, u, f, x))

A → Suc(A?)

I assert that A?, A are C-K ordinal formulae whenever it is true that B[0],
B[f0],. . . are all provable in P . For in this case A? is λufx · u(R) where

R → λy · V (D(y), y, u, f, x)
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and then

λufx ·R(n) conv λufx · V (D(n), n, u, f, x)

conv λufx · V (2, n, u, f, x)

conv λufx · {λn · n(Suc, U)}(n, u, f, x)

conv λufx · n(Suc, U, u, f, x)

which is a C-K ordinal form and

λufx · S(n, Suc, U, u, f, x) conv Suc(λufx · n(Suc, U, u, f, x))

These relations hold for arbitrary positive integer n and therefore A? is a C-K
ordinal formula (condition (9), page 23): it follows immediately that A is also a
C-K ordinal formula. It remains to prove that ∀x0 : B[x0] is provable in PA. To
do this it is necessary to examine the structure of A? in the case that ∀x0 : B[x0]
is false. Let us suppose that ∼B[f (a−1)0] is true so that D(A) conv 1, and let
us consider B where

B → λufx · V (D(a), a, u, f, x)

If A? were a C-K ordinal formula then B would be a number of its fundamental
sequence; but

B conv λufx · V (1, a, u, f, x)

conv λufx · {λn · n(I,Θ(Suc))}(a, u, f, x)

conv λufx ·Θ(Suc, u, f, x)

conv λufx · {λu · u(Θ(U))}(Suc, u, f, x) (9.3)

conv λufx · Suc(Θ(Suc), u, f, x)

conv Suc(λufx ·Θ(Suc, u, f, x)

conv λufx · Suc(B)

This of course implies that B < B and therefore that B is no C-K ordinal for-
mula. This, although fundamental to the possibility of proving our completeness
theorem does not form an actual step in the argument. Roughly speaking our
argument will amount to this. The relation (9.3) implies that the system PB

is inconsistent and therefore that PA
?

is inconsistent, and indeed we can prove
in P (and a fortiori in PA) that ∼∀x0 : B[x0] implies the inconsistency of PA

?
.

The inconsistency of PB is proved by the Gödel argument. Let us return to the
details.
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The axioms in PB are those whose GRs are of the form

B(λmn ·m(ω(2, n), ω(3, n)),K,MP , r)

Replacing B by Suc(B) this becomes

Suc
(
B, λmn ·m(ω(2, n), ω(3, n)) ,K, MP , r

)
conv K

(
B(λmn ·m(ω(2, n), ω(3, n)), K, MP , r)

)
conv B

(
λmn ·m(ω(2, n), ω(3, n)), K, MP , p

)
if r conv 2p+ 1

conv E
(
B(λmn ·m(ω(2, n), ω(3, n)),K,MP ), p

)
if r conv 2p

When we remember the essential property of the formula E we see that the
axioms of PB include all formulae of the form

∃x0 : ProofPB [x0, f
(q)0] ⊃ f

where q is the GR of the formula f.

Let b be the GR of the formula U.

∼∃y0∃x0 : {ProofPB [x0, y0] · Sb[z0, z0, y0]} (U)

Sb[x0, y0, z0] is a particular recursion formula such that Sb[f (l)0, f (m)0, f (n)0]
holds if and only if n is the GR of the result of substituting f (m)0 for z0 in the
formula whose GR is l at all points where z0 is free. Let p be the GR of the
formula L.

∼∃y0∃x0 : {ProofPB [x0, y0] · Sb[f (b)0, f (b)0, y0]} (L)

Then we have as an axiom in PB

∃x0 : ProofPB [x0, f
(p)0] ⊃ L

and we can prove in P

∀x0 : Sb[f (b)0, f (b)0, x0] ⊃ x0 = f (p)0 (9.4)
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since L is the result of substituting f (b)0 for z0 in U; whence

∼∃y0 : ProofPB [y0, f
(p)0] (9.5)

is provable in P . Using (9.4) again we see that L can be proved in P . But if
we can prove L in PB then we can prove its provability in PB, the proof being
in P ; i.e. we can prove

∃x0 : ProofPB [x0, f
(p)0]

in P (since p is the GR of L). But this contradicts (9.5), so that if ∼B[f (a−1)0] is
true we can prove a contradiction in PB or in PA

?
. Now I assert that the whole

argument up to this point can be carried through formally in the system P in
fact if c be the GR of ∼(0 = 0) then

∼∀a0B[a0] ⊃ ∃v0ProofPA? [v0, f
(c)0] (9.6)

is provable in P . We will not attempt to give any more detailed proof of this
assertion. The formula

∃x0 : ProofPA? [x0, f
(c)0] ⊃ ∼(0 = 0) (9.7)

is an axiom in PA. Combining (9.6), (9.7) we obtain ∀x0 : B[x0] in PA.

This completeness theorem as usual is of no value. Although it shows for
instance that it is possible to prove Fermat’s last theorem with ΛP (if it is
true) yet the truth or the theorem would really be assumed by taking a certain
formula as an ordinal formula.

That ΛP is not invariant may be proved easily by our general theorem; alterna-
tively if follows from the fact that in proving our partial completeness theorem
we never used ordinals higher than ω + 1. This fact can also be used to prove
that ΛP is not C-K invariant up to ω + 2.
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10 The continuum hypothesis. A digression
The methods of § 9 may be applied to problems which are constructive ana-
logues of the continuum hypothesis problem. The continuum hypothesis asserts
that 2ℵ0 = ℵ1, in other words that if ω1 is the smallest ordinal α greater than ω
such that a series with order type α cannot be put into one-one correspon-
dence with the positive integers, then the ordinals less than ω1 can be put into
one-one correspondence with the subsets of the positive integers. To obtain
a constructive analogue of this proposition we may replace the ordinals less
than ω1 either by the ordinal formulae, or by the ordinals represented by them;
we may replace the subsets of the positive integers either by the computable
sequences of figures 0, l or by the description numbers of the machines which
compute these sequences. In the manner in which the correspondence is to be
set up there is also more than one possibility. Thus even when we use only one
kind of ordinal formula there is still great ambiguity as to what the constructive
analogue of the continuum hypothesis should be. I shall prove a single result
in this connection23. A number of others may be proved in the same way.

We ask ‘Is it possible to find a computable function of ordinal formulae deter-
mining a one-one correspondence between the ordinals represented by ordinal
formulae and the computable sequences of figures 0, 1?’. More accurately ‘Is
there a formula F such that if Ω is an ordinal formula and n a positive integer
then F (Ω, n) is convertible to 1 or to 2, and such that F (Ω, n) conv F (Ω′, n′),
for each positive integer n, if and only if Ω and Ω′ represent the some ordi-
nal?’. The answer is no, as will be seen follow from this: there is no formula F
such that F (Ω) enumerates a certain sequence of integers (each being 1 or 2)
when Ω represents ω and enumerates another sequence when Ω represents 0. If
there is such an F then there is an a such that F (Ω, a) conv F (Dt, a) if Ω rep-
resents ω but F (Ω, a) and F (Dt, a) are convertible to different integers (1 or 2)
if Ω represents 0. To obtain a contradiction from this introduce a WFF Gm

not unlike Mg. If the machine M whose D.N. is n has printed 0 by the time
the mth complete configuration is reached then Gm(m,n) conv λmn ·m(n, I, 4)
otherwise Gm(m,n) conv λpq ·Al(4(P, 2p+2q), 3, 4). Now consider F (Dt, a) and
F (Lim(Gm(n)), a). If M never prints 0 Lim(Gm(n)) represents the ordinal ω.
Otherwise it represents 0. Consequently these two formulae are convertible to
one another if and only ifM never prints 0. This gives us a means of telling of
any machine whether it ever prints 0, which is impossible.
Results of this kind have of course no real relevance for the classical continuum
hypothesis.

23A suggestion to consider this problem came to me indirectly from F. Bernstein. A related
problem was suggested by P. Bernays.
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11 The purpose of ordinal logics

Mathematical reasoning may be regarded rather schematically as the exercise
of a combination of two faculties24, which we may call intuition and ingenuity.
The activity of the intuition consists in making spontaneous judgments which
are not the result of conscious trains of reasoning. These judgments are often,
but by no means invariably correct (leaving aside the question as to what is
meant by ‘correct’). Often it is possible to find some other way of verifying
the correctness of an intuitive judgment. One may for instance judge that all
positive integers are uniquely factorizable into primes; a detailed mathematical
argument leads to the same result. It will also involve intuitive judgments,
but they will be ones less open to criticism than the original judgement about
factorization. I shall not attempt to explain this idea of ‘intuition’ any more
explicitly.

The exercise of ingenuity in mathematics consists in aiding the intuition through
suitable arrangements of propositions, and perhaps geometrical figures or draw-
ings. It is intended that when these are really well arranged validity of the
intuitive steps which are required cannot seriously be doubted.

The parts played by these two faculties differ of course from occasion to oc-
casion, and from mathematician to mathematician. This arbitrariness can be
removed by the introduction of a formal logic. The necessity for using the in-
tuition is then greatly reduced by setting down formal rules for carrying out
inferences which are always intuitively valid. When working with a formal logic
the idea of ingenuity takes a more definite shape. In general a formal logic will
be framed so as to admit a considerable variety of possible steps in any stage
in a proof. Ingenuity will then determine which steps are the more profitable
for the purpose of proving a particular proposition. In pre-Gödel times it was
thought by some that it would probably be possible to carry this program to
such a point that all the intuitive judgments of mathematics could be replaced
by a finite number of these rules. The necessity for intuition would then be
entirely eliminated.

In our discussions, however, we have gone to the opposite extreme and elim-
inated not intuition but ingenuity, and this in spite of the fact that our aim
has been in much the same direction. We have been trying to see how far it is
24We are leaving out of account that most important faculty which distinguishes topics of

interest from others; in fact we are regarding the function of the mathematician as simply
to determine the truth or falsity of propositions.
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possible to eliminate intuition, and leave only ingenuity. We do not mind how
much ingenuity is required, and therefore assume it to be available in unlimited
supply. In our meta-mathematical discussions we actually express this assump-
tion rather differently. We are always able to obtain from the rules of a formal
logic a method for enumerating the propositions proved by its means. We then
imagine that all proofs take the form of a search through this enumeration for
the theorem for which a proof is desired. In this way ingenuity is replaced by
patience. In these heuristic discussions however, it is better not to make this
reduction.

Owing to the impossibility of finding a formal logic which will wholly eliminate
the necessity of using intuition we naturally turn to ‘non-constructive’ systems
of logic with which not all the steps in a proof are mechanical, some being
intuitive. An example of a non-constructive logic is afforded any ordinal logic.
When we have an ordinal logic we are in a position to prove number theoretic
theorems by the intuitive steps of recognizing formulae as ordinal formulae, and
the mechanical steps of carrying out conversions.

What properties do we desire a non-constructive logic to have if we are to make
use of it for the expression of mathematical proofs?

We want it to be quite clear when a step makes use of intuition, and when it
is purely formal. The strain put on the intuition should be a minimum. Most
important of all, it must be beyond all reasonable doubt that the logic leads
to correct results whenever the intuitive steps are correct25 It is also desirable
that the logic be adequate for the expression of number theoretic theorems, in
order that it may be used in meta-mathematical discussions (cf § 5).

Of the particular-ordinal logics we have discussed ΛP and ΛH certainly will
not satisfy us. In the case of ΛH we are in no better position than with a
constructive logic. In the case of ΛP (and for that matter also ΛH) we are
by no means certain that we shall never obtain any but true results, because
no do not know whether all the number theoretic theorems provable in the
system P are true. To take ΛP as a fundamental non-constructive logic for
meta-mathematical arguments would be most unsound. There remains the
25This requirement is very vague. It is not of course intended that the criterion of the cor-

rectness of the intuitive steps be the correctness of the final result. The meaning becomes
clearer if each intuitive step be regarded as a judgment that a particular proposition is true.
In the case of an ordinal logic it is always a judgment that a formula is an ordinal formula,
and this is equivalent to judging that a number theoretic proposition is true. In this case
then the requirement is that the reputed ordinal logic be an ordinal logic.
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system of Church which is free of these objections. It is probably complete
(although this would not necessarily mean much) and it is beyond reasonable
doubt that it always leads to correct results26. In the next section I propose to
describe another ordinal logic, of a very different type, which is suggested by
the work of Gentzen, and which should also be adequate for the formalization
of number theoretic theorems. In particular it should be suitable for proofs of
meta-mathematical theorems (cf § 5).

26This ordinal logic arises from a certain system C0 in essentially the same way as ΛP arose
from P . By an argument similar to one occurring in § 5 we can show that the ordinal logic
leads to correct results if and only if C0 is valid; the validity of C0 is proved in Church [1],
making use of the results of Church and Rosser [6].
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12 Gentzen type ordinal logics

In proving the consistency of a certain system of formal logic Gentzen ([7]) has
made use of the principle of transfinite induction for ordinals less than ε0, and
suggested that it is to be expected that transfinite induction carried sufficiently
far would suffice to solve all problems of consistency. Another suggestion to
base systems of logic on transfinite induction has been made by Zermelo (Zer-
melo [20]). In this section I propose to show how this method of proof may be
put into the form of a formal (non-constructive) logic, and afterwards to obtain
from it an ordinal logic.

We could express the Gentzen method of proof formally in this way. Let us take
the system P and adjoin to it an axiom UΩ with the intuitive meaning that
the WFF Ω is an ordinal formula, whenever we feel certain that Ω is an ordinal
formula. This is a non-constructive system of logic which may easily be put into
the form of an ordinal logic. By the method of § 6 we make correspond to the
system of logic consisting of P with the axiom UΩ adjoined a logic formula LΩ:
LΩ is an effectively calculable function of Ω and there is therefore a formula Λ1

G

such that Λ1
G(Ω) conv Ω for each formula Ω. Λ1

G is certainly not an ordinal logic
unless P is valid, and therefore consistent. This formalization of Gentzen’s idea
would therefore not be applicable for the problem with which Gentzen himself
was concerned, for he was proving the consistency of a system weaker then P .
However, there are other ways in which the Gentzen method of proof can be
formalized. I shall explain one beginning by describing a certain system of
symbolic logic.

The symbols of the calculus are f, ×, , , 0, S, R, Γ, ∆, E, |, �, !, (, ), =,
and the comma ‘,’. We use capital German letters to stand for variable or
undetermined sequences of these symbols.

It is to be understood that the relations that we are about to define hold only
when compelled to do so by the conditions we lay down. The conditions should
be taken together as a simultaneous inductive definition of all the relations
involved.

Suffixes
is a suffix. If γ is a suffix then γ is a suffix.

Indices
is an index. If J is an index then J is an index.
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Numerical variables
If γ is a suffix then xγ is a numerical variable.

Functional variables
If γ is a suffix then and J is an index then fγJ is a functional
variable of index J.

Arguments
(, ) is an argument of index . If (U) is an argument of index J

and F is a term then (UF, ) is an argument of index J .

Numerals
0 is a numeral.
If N is a numeral then S(,N, ) is a numeral.
In meta-mathematical statements we shall denote the numeral in
which S occurs r times by S(r)(, 0, ).

Expressions of given index
A functional variable of index J is an expression of index J.
R, S are expressions of index , respectively.
If N is a numeral then it is also an expression of index .
Suppose G is an expression of index J, Y one of index J , and R

one of index J ; then (ΓG) and (∆G) are expressions of index J,
whilst (EG) and (G�R) and (G|Y) and (G!Y!R) are expressions
of index J .

Function constants
An expression of index J in which no functional variable occurs is
a function constant of index J. If in addition R do not occur the
expression is called a primitive function constant.

Terms
0 is a term.
Every numerical variable is a term.
If G is an expression of index J and (U) is an argument of index J

then G(U) is a term.
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Equations
If F1 and F2 are terms then F1 = F2 is an equation.

Provable equations
We define what is meant by the provable equations relative to a
given set of equations.

(a) The provable equations include all the axioms. The axioms are of the form
of equations in which the symbols Γ, ∆, E, |, �, ! do not appear.

(b) If G is an expression of index J and (U) is an argument of index J then

(ΓG)(Ux ,x , ) = G(Ux ,x , )

is a provable equation.

(c) If G is an expression of index J , and (U) is an argument of index J, then

(∆G)(Ux , ) = G(,x,U)

is a provable equation.

(d) If G is an expression of index J, and (U) is an argument of index J, then

(EG)(Ux , ) = G(U)

is a provable equation.

(e) If G is an expression of index J and Y is one of index J , and (U) is an
expression of index J, then

(G|Y)(U) = Y(UG(U), )

is a provable equation.

(f) If N is an expression of index then N(, ) = N is a provable equation.

(g) If G is an expression of index J, and R is one of index J , and (U) is an
argument of index J , then

(G�R)(U0, ) = G(U)

and
(G�R)(US(,x , ), ) = R

(
Ux , S(,x , ), (G�R)(U,x , ),

)
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are provable equations. If in addition Y is an expression of index J and

R(,G(US(,x , ), ),x , ) = 0

is provable then

(G ! R ! Y)(US(, x, ), ) =

R
(
UY(US(, x, ), ), S(, x, ), (G ! R ! Y)(UY(US(, x, ), ), ),

)
and

(G ! R ! Y)(U0, ) = G(U)

are provable

(h) If F1 = F2 and F3 = F4 are provable where F1, F2, F3, F4 are terms then
F4 = F3 and the result of substituting F3 for F4 at any particular occurrence
in F1 = F2 are provable equations.

(i) If F1 = F2 is a provable equation then the result of substituting any term
for a particular numerical variable throughout this equation is provable.

(j) Suppose that G, G1 are expressions of index J , that (U) is an argument of
index J not containing the numerical variable X and that G(U0, ) = G1(U0, )
is provable. Also suppose that if we add G(UX, ) = G1(UX, ) to the axioms
and restrict (i) so that it can never be applied to the numerical variable X

then
G(US(,X, ), ) = G1(US(,X, ), )

becomes a provable equation; in the hypothetical proof of this equation this
rule (j) itself may be used provided that a different variable is chosen to
take the part of X.

Under these conditions G(UX, ) = G1(UX, ) is a provable equation.

(k) Suppose that G, G1, Y are expressions of index J , that (U) is an argu-
ment of index J not containing the numerical variable X and such that
G(U0, ) = G1(U0, ) and R(,G(US(,X, ), ), S(,X, ), ) = 0 are provable equa-
tions. Suppose also that if we add

G
(
UY(US(,X, ), ),

)
= G1

(
UY(US(,X, ), ),

)
to the axioms, and again restrict (i) so as not to apply to X then

G(UX, ) = G1(UX, ) (12.1)
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becomes a provable equation; in the hypothetical proof of this equation this
rule (j) itself may be used provided that a different variable is chosen to
take the part of X.

Under these conditions (12.1) is a provable equation.

We have now completed the definition of a provable equation relative to a
given set of axioms. Next we shall show how to obtain an ordinal logic from
this calculus. The first step is set up a correspondence between some of the
equations and number theoretic theorems, in other words to show how they
can be interpreted as number theoretic theorems. Let G primitive function
constant of index . G describes a certain primitive recursive function ϕ(m,n),
determined by the condition that for all m, n the equation

G(, S(m)(, 0, ), S(n)(, 0, ), ) = S(ϕ(m,n))(, 0, )

shall be provable without using the axioms (a). Suppose also that Y is an
expression of index J. Then to the equation

G(,x ,Y(,x , ), ) = 0

we make correspond the number theoretic theorem which asserts for each nat-
ural number m there is a natural number n such that ϕ(m,n) = 0. (The
circumstances that there is more than one equation to represent each number
theoretic theorem could be avoided by a trivial modification of the calculus.)

Now let us suppose some definite method is chosen for describing the sets of
axioms by means of positive integers, the null set of axioms being described by
the integer 1. By an argument used in § 6 there is a WFF Σ such that if r is
the integer describing a set A of axioms then Σ(r) is a logic formula enabling
us to prove just those number theoretic theorems which are associated with
equations provable with the above described calculus, the axioms being just
those described by the number r.

I shall show two ways in which the construction of the ordinal logic may be
completed.

In the first method we make use of the theory of general recursive functions
(Kleene [11]). Let us consider all equations of the form

R
(
, S(m)(, 0, ), S(n)(, 0, ),

)
= S(p)(, 0, ) (12.2)
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which are obtainable from the axioms by the use of the rules (h), (i). It is a
consequence of the theorem of equivalence of λ-definable and general recursive
function (Kleene [13]) that if r(m,n) is any λ-definable function of two variables
then we can choose the axioms so that (12.2) with p = r(m,n) is obtainable in
this way for each pair of natural numbers m, n, and no equation of the form

S(m)(, 0, ) = S(n)(, 0, ) (m 6= n) (12.3)

is obtainable. In particular this is the case if r(m,n) is defined by the condition
that

(Ω(m,n) convS(p)) implies p = r(m,n)
r(0, n) = 1 for all n > 0; r(0, 0) = 2

where Ω is an ordinal formula. There is a method for obtaining the axioms
given the ordinal formula, and consequently a formula Rec such that for any
ordinal formula Ω, Rec(Ω) convm where m is the integer describing the set of
axioms corresponding to Ω. Then the formula

Λ2
G → λw · Σ(Rec(ω))

is an ordinal logic. Let us leave the proof of this aside for the present.

Our second ordinal logic is to be constructed by a method not unlike the one
we used in constructing ΛP . We begin by assigning ordinal formulae to all
sets of axioms satisfying certain conditions. For this purpose we again consider
that part of the calculus which is obtained by restricting ‘expressions’ to be
functional variables or R or S and restricting the meaning of ‘term’ accordingly;
the new provable equations are given by conditions (a), (h), (i), together with
an extra condition (12.4).

The equation R(, 0, S(,x , ), ) = 0 is provable. (12.4)

We could design a machine which would obtain all equations of the form (12.2),
with m 6= n, provable in this sense, and all of the form (12.3), except that it
would cease to obtain any more equations when it had once obtained one of the
latter ‘contradictory’ equations. From the description of the machine we obtain

65



a formula Ω such that

Ω(m,n) conv 2 if R(, S(m−1)(, 0, ), S(n−1)(, 0, ), ) = 0
is obtained by the machine

Ω(m,n) conv 1 if R(, S(n−1)(, 0, ), S(m−1)(, 0, ), ) = 0
is obtained by the machine

Ω(m,m) conv 3 always

The formula Ω is an effectively calculable function of the set of axioms, and
therefore also of m; consequently there is a formula M such that M(m) conv Ω
when m describes the set of axioms. Now let Cm be a formula such that if b is
a GR of a formula M(m) then Cm(b) convm, but otherwise Cm(b) conv 1. Let

Λ3
G → λwa · Γ(λn · Σ(Cm(Tn(w, n)), a))

Then Λ3
G conv 2 if and only if Ω convM(m) where m describes a set of axioms

which, taken with our calculus, suffices to prove the equation which is, roughly
speaking, equivalent to ‘A is dual’. To prove Λ3

G is an ordinal logic it suffices
to prove that the calculus with the axioms described by m proves only true
number theoretic theorems when Ω is an ordinal formula.

This condition on m may also be expressed in this way. Let us put m � n

if we can prove R(, S(m)(, 0, ), S(n)(, 0, ), ) = 0 with (a), (h), (i), (12.4): the
condition is that m � n be a well ordering of the natural numbers and that
no contradictory equation (12.3) be provable with the same rules(a), (h), (i),
(12.4). Let us say that such a set of axioms is admissible. Λ3

G is an ordinal
logic if the calculus leads to none but true number theoretic theorems when an
admissible set of axioms is used.

In the use of Λ2
G, Rec(Ω) describes an admissible set of axioms whenever Ω is

an ordinal formula. Λ2
G will therefore be an ordinal logic if the calculus leads

to correct results when admissible axioms are used.

To prove that admissible axioms have this property I shall not attempt to do
more than show how interpretations can be given to the equations of the calculus
so that the rules of inference (a)–(k). become intuitively valid methods of
deduction, and so that the interpretation agrees with our convention regarding
number theoretic theorems.

Each expression is the name of a function, which may be only partially defined.
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The expression S corresponds simply to the successor function. If G is either R
or a functional variable and is of index J (p + 1 symbols in the index) then it
corresponds to a function g of p natural numbers defined as follows. If

G(, S(r1)(, 0, ), S(r2)(, 0, ), . . . , S(rp)(, 0, ), ) = S(l)

is provable by the use of (a), (h), (i), (12.4) only, then g(r1, . . . , rp) has the
value l. It may not be defined for all arguments, but its value is always unique,
for otherwise we could prove a ‘contradictory’ equation and M(m) would then
not be an ordinal formula. The functions corresponding to the other expressions
are essentially defined by (b)–(f). For example if g is the function corresponding
to G and g′ that corresponding to (ΓG) then

g′(r1, r2, . . . , rp, l,m) = g(r1, r2, . . . , rp,m, l)

The values of the functions are clearly unique (when defined at all) if given by
one or (b)–(e). The case (f) is less obvious since the function defined appears
also in the definition. I shall not treat the case of (G � R) as this is the
well known definition by primitive recursion, but let us show the values of the
function corresponding to (G ! R ! Y) are unique. Without loss of generality
we may suppose that (U) is of index . We have then to show that if h(m)
is the function corresponding to Y and r(m,n) that corresponding to R, and
k(u, v, w) a given function and a a given natural number then the equations

l(0) = a (12.5)

l(m+ 1) = k(h(m+ 1),m+ 1, l(h(m+ 1))) (12.6)

do not ever assign two different values for the function l(m). Consider those
values of r for which we obtain more than one value of l(r). and suppose that
there is at least one such. Clearly 0 in not one for l(0) can only be defined
by (12.5). As the relation � is a well ordering there is an integer r0 such that
r0 > 0, l(r0) is not unique, and if s 6= l0 and l(s) is not unique then r0 � s.
Putting s = h(r0) we find also s � r0 which is impossible. There is therefore
no value for which we obtain more than one value for the function l(r).

Our interpretation of expressions as functions give us an immediate interpre-
tation for equations with no numerical variables. In general we interpret an
equation with numerical variables as the conjunction of all equations obtain-
able by replacing the variables by numerals. With this interpretation (h), (i)
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are seen to be valid methods of proof. In (j) the provability of

G(US(,x , ), ) = G1(US(,x , ), )

when G(Ux , ) = G1(Ux , ) is assumed to be interpreted as meaning that the im-
plication between these equations holds for all substitutions of numerals for x .
To justify this one should satisfy oneself that these implications always hold
when the hypothetical proof can be carried out. The rule of procedure (j)
is now seen to be simply mathematical induction. The rule (k) is a form of
transfinite induction. In proving the validity of (k) we may again suppose (U)
is of index . Let r(m,n), g(m), g1(m), h(n) be the functions corresponding
respectively to R, G, G1, Y.

We shall prove that if g(0) = g1(0) and r(h(n), n) = 0 for each positive integer n
and g(n+1) = g1(n+1) whenever g(h(n+1)) = g1(h(n+1)) then g(n) = g1(n)
for each natural number n. We consider the class of integers w for which
g(n) = g1(n) is not true. If the class is not void it has a positive member n0

which precedes all other members in the well ordering�. But h(n0) is another
member of the class, for otherwise we should have g(h(n0)) = g1(h(n0)) and
therefore g(n0) = g1(n0) i.e. n0 would not be in the class. This implies n0 �
h(n0) contrary to r(h(n0), n0) = 0. The class is therefore void.

It should be noticed that we do not really need to make use of the fact that Ω is
an ordinal formula. It suffices that Ω should satisfy conditions (a)–(e) (page 21)
for ordinal formulae, and in place of (f) satisfy (f ′):

(f ) There is no formula T such that T (n) is convertible to a formula represent-
ing a positive integer for each positive integer n, and such that Ω(T (n), n)
conv 2, for each positive integer n for which Ω(n, n) conv 3.

The problem as to whether a formula satisfies conditions (a)–(e), (12) is num-
ber theoretic. If we use formulae satisfying these conditions instead of ordinal
formulae with Λ3

G we have a non-constructive logic with certain advantages
over ordinal logics. The intuitive judgements that must be made are all judge-
ments of the truth of number theoretic theorems. We have seen in § 9 that
the connection of ordinal logics with the classical theory of ordinals in quite
superficial. There seems to be good reasons therefore for giving attention to
ordinal formulae in this modified sense.
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The ordinal logic Λ3
G appears to be adequate for most purposes. It should for

instance yo be possible to carry out Gentzen’s proof of consistency of number
theory, or the proof of the uniqueness of the normal form of a well formed
formula (Church and Rosser [6]) with our calculus and a fairly simple set of
axioms. How far this is the case can of course only be determined by experiment.

One would prefer that a non-constructive system of logic based on transfinite
induction were rather simpler than the one we have described. In particular
it would seem that it should be possible to eliminate the necessity of stating
explicitly the validity or definitions by primitive recursions, as this principle
itself can been shown to be valid by transfinite induction. It is possible to make
such modifications in the system, even in such a way that the resulting system is
still complete, but no real advantage is gained by doing so. The effect is always,
so far as I know, to restrict the class of formulae provable with a given set of
axioms, so that we obtain no theorems but trivial restatements of the axioms.
We have therefore to compromise between simplicity and comprehensiveness.
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General recursive function, 6
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Primitive recursive (function or rela-
tion), 8, 35

Recursion formula, 36
Representation of ordinals, by C-K or-

dinal formulae, 23
Representation of ordinals, by ordinal

formulae, 20
Standardized logic, 16
Type, 39
Validity of system, 32
Well formed formula (WFF), 2
Well ordered series, 20

1, 2, 3, 4

Micellaneous:

λ-definable function, 4
α – between WFF, 23
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C[A] (A is a C-K ordinal formula), 33

System P (in footnote), 35
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