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1. Introduction


	The following approach to computability (and decidability) has been inspired by a general reflection which may be called philosophical. 


	Every computation is a graphical procedure. Then a definition of computability (or decidability) may be verbalized on the ground of a formal theory of texts without any reference to mathematical entities, though mathematical notions and mathematical truths however are involved in the classical exhibitions of decidability. 


Roughly speaking the idea of the paper is to replace mathematical tricks by logical machinery, a logicism in a new version. 


Texts are finite strings of symbols. A theory of linear texts was initiated by Alfred Tarski in 1930. Such a theory is a kind of metalogic. Its two axioms are mentioned in the first (Polish) edition of Tarski’s well known paper on the classical notion of truth. The foundation of decidability based on the formal theory of texts, which is presented in this paper, seems to be logically simpler and more intuitive than the computability introduced in arithmetic. Moreover it allows to prove undecidability of logic without any reference to mathematics what may be attractive for philosophers. On the other hand in comparison with the theories of algorithms or theories of machines (Turing’s) which also start without mathematics but always involve a kind of ‘science fiction’, the present approach seems to be philosophically more plausible.





The definition of decidability.


We shall consider texts as strings composed of the following 15 primitive symbols:


  (  )  ,  x   /  =    t   E  <   *  (  (  (  (  0


They are atomic texts (atoms of the texts which will be considered below in metalogic.) On the other hand it is well known that two symbols are sufficient to code any language. 


	The metalogic in which I am going to formulate the definition of decidability will not be strictly formalized. But I would like to use some abbreviations, especially two: 


concatenation will be abbreviated by ! and graphical inclusion by <:


B!C means: the text composed of the text B immediately followed by the text C.


A<B means: the fact that the text A is included in the text B. 


(Inclusion does not exclude identity. A<A is true.)


	The metalogic will be a theory of higher order or may be implemented with a set-theory. 


	Decidability considered in this paper might be also called discernibility. From logical point of view it splits into two degrees: Elementary Discernibility and  General Discernibility. They are classes of relations between texts.


Sets of texts are also considered as relations (of one argument). The notion of relation is logically simpler that the notion of function. A relation is this what is expressed by a predicate. In this exposition we join in one class relations of different numbers of arguments. (This, of course, may be consistently formalized using a theory of logical types or some set-theoretical means.)


	


The definition of Elementary Discernibility (Elementary Decidability) is inductive:


Def. 1


Every singleton set of an atomic text is Elementary Discernible (ED)


The relation of identity between texts is ED 


The relation of concatenation between texts is ED


The relation of inclusion < between texts is ED 


The converse (permutation) of a ED relation is also ED


Adding new additional arguments without any conditions concerning them does not lead out of the class ED


Identification of arguments does not lead out of the class ED


If a relation (or a set) R  is ED, then also  nonR is ED


If R and S are ED and have the same number of arguments, then also  R or S is ED


If R is ED and R is at least one argument relation, and the relation S is defined by the use of restricted quantifier:


S(A,...)  iff  for any text B (if B<A then R(B,...))


then S is also  Elementary Discernible. 





The definition of General Discernibility is in one step:


Def2


	The relation R is General Discernible iff there are two Elementary Discernible relation S and T such that: 


G1          R(A...) iff there is such B that S(A...,B)


 G2     nonR(A...) iff there is such B that T(A...,B)





	It is easy to grasp the intuitive value of the above definitions. Computability (or Discernibility) means the possibility of checking whether a considered relation holds or does not hold for given individual texts. If a relation (or a property) of the text A is defined only by referring to the parts of A, then this relation or property may be checked in a finite number of steps because the text is finite. This is the case of  Elementary Discernibility. 


If the relation R is General Discernible, then it is defined by the equivalencies G1 and G2. We can order all texts in a sequence {Bi} and successively check S(A...,Bi) and T(A..,,Bi) for each text Bi. 


According to G1, G2, and the rule of the excluded middle it is true that:


there is a text B such that S(A...,B) or T(A...,B) .


Hence after a finite number of checking we shall find such Bi and according to the equivalencies G1 and G2 we can check the relation R. 





	We may easy show that the class GD is closed under the Boolean operations. For negation it is evident because of the symmetry of the Def 2. For conjunction it suffices to notice in metalogic the following theorem:


(For some B R(A,B) and for some C S(A,C))  iff   for some D 


( there are some B and C contained in D and D=B!C and R(A,B) and S(A,C) )





The above tautology allows to replace two not restricted quantifiers by one non restricted. The same elementary and purely logical tricks allow to prove e.g. that (for some fixed  C and D) if the relation S is GD then also the relation R defined as follows:


R(A)  iff  S(C!A!D). 


is GD.





3. First order theory of Linear Text (LT) as object theory of our consideration 





	In the classical exhibitions of decidability the system of arithmetic occurs in a double role. As a meta-theory and as the object theory. The same we shall imitate in the theory of texts. In the metalogic which is a theory of texts we shall investigate a much weaker first order theory of texts called LT.


The system of theorems of LT is considered as formalized in the first order functional calculus. The main primitive notion of LT is concatenation. It is symbolized in LT by asterisk *. As axioms for LT we adopt first two axioms of Tarski (about connectivity and linearity of concatenation). Freely written they are:


A1    x*(y*z)=(x*y)*z


A2  x*y=z*u ( ((x=z ( y=u) ( (Ew)((x*w=z ( w*u=y) ( (z*w=x ( w*y=u)))


 	If we use the above mentioned primitives and add general quantifiers at the beginning, then A1 should be written as follows:


(x)(x/)(x//)((x*(x/*x//))=((x*x/)*x//)))


Then reader can easily guess that:  x   x/  x//  x///  ... and so on are different variables, (x/.../) is a general quantifier and (Ex/.../)  is an existential quantifier. They bound the variable x/.../  written in the bracket. And the terms: t  t/  t//  t///... are some individual constants. 


The formulas of LT which shall be written in this exhibition will be written almost like they should be written using primitive signs of LT. But I shall be not to much pedantic. E.g. I shall omit the general quantifiers at the beginning of the theorems and instead of  x/  x//  x/// I shall write: y  z  u. 


Other axioms are the following:


A3	x=y*z (  (((x=y) ( ((x=z))		A3`	((x=(y*(x*u)))   )


A4 	x<y  iff  ( x=y ( (Ez)(y=x*z ( y=z*x) ( (Ez)(Eu) (y=z*(x*u) ))


It is an equivalence which may be a definition. But it will be convenient to have < as primitive sign of the system. 


The following axioms concern constants: t,  t/  t//  t///...t15  . We assume that they denote different atomic signs:


A5	x<ti (  x=ti     (for ti = t,  t/, t//, t///,...,t15 )


A6	((ti=tj) 	(for i(j different quantities of sign /)


	A6 is a collection of 120 negated equalities. 





The first order theory based on the axioms A1-A6 will be called LT1. 





As consequences of these axioms let me notice first some theorems about atoms. We can assume the following definition of atomic text:


T1		At(z) iff  (x)(x<z ( x=z)


Hence we obtain from A5 and the definition T1 that 


T2		At(ti)     (for ti = t,  t/, t//, t///,...,t15 )


Now we want to notice three cancellation rules. The axiom A2 implies that:


T3		(At(x) ( At(z) ( x*y=z*u) ( x=z


Proof. From A3 and A4 we get that x=z  or x<z  or z<x. But according to T1 also the inclusions  x<z  and  z<x imply that x=z. 


 T4		x*y=x*u ( y=u


Proof. According to A2 (putting  x for z)  we get that y=u  or there is such w that: 


(x*w=x ( w*u=y) ( (x*w=x ( w*y=u)))


but x*w=x  contradicts to A3. Hence the only possibility is that  y=u. 


	In analogical manner we get: 


T5		x*z=y*z  ( x=y


T6	x*y=ti*z ( (x=ti((Ew)(x=ti*w))


Proof. According to A2 the assumption of T7 implies three possibilities. The first implies x=ti, the second is excluded by the atomicity of ti (A5 and A3), the third implies (Ew)(x=ti*w)).


	If we introduce the definition of ‘being the first part in a text’:


T7	u is first in x iff  (x=u((Ew)(x=u*w))


then we can express T6 also in the following way:


T8 	ti is first in x*y ( ti is first in x








4. Naming texts by some constants of the object theory. 





	A part of the considerations concerning computability is a kind of a ‘minimal sematics’. In arithmetic we also adopt a system of names for all natural numbers which are elements of the standard model. We denote numbers, of course, by numerals which are constants in any theory of arithmetic. This procedure as the first step for the representability of computable functions is underlined in some textbooks. (E.g. in my textbook: A. Grzegorczyk An Outline of Mathematical Logic Reidel 1974. p 466.). The elements denoted by the constants constitute the ‘standard initial segment’ of any model of the object theory. The same concerns the theory of texts. 


	First we give names for the symbols which are the atomic texts. We can do this by means of a kind of a table:


Table of symbols and their names:


I�
(�
)�
,�
x�
/�
=�
t�
E�
<�
*�
(�
(�
(�
(�
0�
�
II�
left br�
right b�
comma�
eks�
slash�
ident.�
te�
exists�
includ�
asterisk�
impl.�
konju�
altern�
neg�
zero�
�
III�
t/�
t//�
t///�
t////�
t/////�
t//////�
t///////�
t////////�
t/////////�
t//////////�
t///////////�
t////////////�
t/////////////�
t//////////////�
t///////////////�
�
The texts considered in our theory are abstract entities. They are not individual material inscriptions but classes of abstraction of the relation of graphical conformity. Hence we can say that in the line I of the above table there are representatives of the atomic texts. In the line II there are their abbreviated names in the metalogic. In the line III there are representatives of texts which are also the names of the texts represented in row I, but they are the names in LT1. The texts represented in the row III are well formed constants of the theory LT1. 


Now we define the function of naming of all texts by some special texts which are well formed constants of LT1. 


	Let  \A\  be text which is in LT1 the name of the text A.


The general definition of this function is inductive and may be written as follows: 





Def3


If A is one of the primitive fifteen symbols then we put that:


\A\  is one of the signs:  t/  t//  t///...t15  ,


this one which is written below this symbol in the row III of the above table. 


So the texts: t/   t//  t///   .  .  .	t15  are the names of our primitive symbols. 


If  for the texts A and B their names \A\ and \B\ are defined, and the text A is one of the above mentioned primitive symbols, then we put that the text composed of the text A immediately followed by the text B has the name which is the text composed  of: left bracket, \A\,  the asterisk, \B\, and the right bracket.


We can write this quite formally as:


 \A!B\ = left bracket! \A\! asterisk! \B\! right bracket.


	E.g. 


the text of the shape	(x)	has the name of the shape	(t/*(t////*t//))


and the existential quantifier bonding the variable  x , this means the text of the shape:


(Ex) 


has the name of the shape:	   (t/*(t////////*(t////*t//))).


	According to the connectivity of concatenation the same text would be denoted also by the constant name  ((t/*t////////)*(t////*t//)) but in order to make the function \A\ univocal we choose conventionally the first notation. 





	In the following of this paper I shall use an informal, incorrect and inconsequent notation for formulas of LT1. In this notation some parts of a formula will be named in the metalogic, usually by the function \A\, some other parts of the formula will be written as they should be written in LT1. E.g. I shall use the inscription:  \A\*\B\ which evidently is not correct, neither in LT nor in metalogic:  a correct inscription (in metalogic) is: \A\!asterisk!\B\. 


Let me notice some properties of the function of naming defined above. 


Property 1. For every text A its name  \A\ is the a well formed composed constant symbol of the Theory LT1. The text A may make no sense (may be not a wff of LT1), but its name \A\ is always a well formed constant symbol of LT1. 


Property 2. If the text C is composed of the text B immediately followed by the text A then the equality  \C\=\B\*\A\  is a theorem of LT1. 


(Strictly we shall write: If C=B!A, then \C\!ident!\B\!asterisk!\A\ is theorem of LT1.)


Proof by induction in the metalogic.  First we realize that if B is one of the primitive signs of LT1 then the equality  \C\=(\B\*\A\)  is the consequence of x=x assumed in LT1 , because \C\ is simply defined as (\B\*\A\)  according to the above definition Def 3 of naming. Now suppose that the property is proved for give texts: C, B and A then we shall prove this property for a text B1 longer than the text B (having on the left one primitive sign more). 


According to the definition of naming:


If the text C1 is composed of this primitive sign followed by  B followed by the text A, then the equality of the shape  \C1\ =(ti*\C\)  is a consequence of x=x assumed in LT1, where  ti  is the name of this additional primitive sign added in front of the text B. 


	On the other hand by the inductive hypothesis the identity  \C\=(\B\*\A\)  is a theorem of LT1.  Thus we get that also the formula: 


\C1\ =(ti*(\B\*\A\))  


is a theorem of LT1.  Hence from the Axiom A1 we get that also the formula:


\C1\ =((ti*\B\)*\A\)  


is a theorem of LT1.  On the other hand  the equality \B1\=(ti*\B\) is a consequence of x=x  according to the definition of naming. Thus we get that:


\C1\ = (\B1\*\A\)  


is also a theorem of LT1. (q.e.d.)


Property 3  If A is a text and B1,...,Bm are all texts contained in the text A, then the following formula is theorem in LT1:


(x)(x<\A\  iff  ( x=\B1\(...( x=\Bm\))	


The proof, of course by induction in the metalogic, is trivial and rests on the assumption that every text is a finite string of primitive symbols. 





Let assume the following abbreviation: Sub(F,\A1\,...,\An\) signifies the formula obtained by substitution of the constants \A1\,...,\An\ for the variables x1,...,xn  in the formula F in which  x1,...,xn are free variables.


Property 4  If  the theory T contains LT1, A is a text and B1,...,Bm are all texts contained in the text A, and for any i  (0<i<m+1) the formula 


Sub(F,\Bi\,\A2\,...,\An\)


is a theorem of T, then the following formula G is also a theorem of T:


G         (x/)(x/<\A\ ( Sub(F,x/,\A2\,...,\An\))


Proof. Notice that the variable x/  which is supposed to be free in F and in the formula Sub(F,\Bi\,\A2\,...,\An\)


 is substituted by the constant \Bi\, is also free in the formula Sub(F,x/,\A2\,...,\An\), but becomes, of course, bonded in the formula G. Other variables x2,...,xn   free in F are in Sub(F,x/,\A2\,...,\An\) substituted respectively by \A2\,...,\An\.


	From the assumption of this Property it follows by the rules of extensionality that the implication:


( x=\B1\(...( x=\Bm\) ( Sub(F,x/,\A2\,...,\An\)


is a theorem of T. From this implication and the Property 3 we get the desired conclusion. 





5. The representability of  discernible relations in the first order Theory of Linear Text





Representability is a fundamental property of computable relations. The essential idea of representability is that:  


Everything what may be checked is also logically provable in an appropriate formal theory.


Different approaches to computabity are connected with some deductive procedures. The function of naming serves to translate the facts concerning entities into the corresponding theorems about these entities. The function of naming enables us to formulate the following general definition of representability (for theories based on the chosen primitive symbols). 


One may consider some kinds of representability. The fundamental is  the notion of uniform representability:


Definitions:





Def4


The relation R is uniformly represented  by the formula F in the theory T iff the formula F has as many free variables as there are arguments for which the relation R is defined and the following implications hold: 


(A)    If     R(A1,...,An) then  the formula Sub(F,\A1\,...,\An\) is theorem of T


If   nonR(A1,...,An)  then  the formula neg(Sub(F,\A1\,...,\An\)) is theorem of T,


 


where x1,...,xn are the all free variables of the formula F and they are in the formula Sub(F,\A1\,...,\An\) (substitution) replaced respectively by \A1\,...,\An\ ; neg(G) signifies the negation of the formula G. 





Let me notice the following evident:





Corollary 1 If the theory T is consistent, then the implications (A) and (B) may be strengthen to equivalences. 


Proof. Use the rule of excluded middle.





Def5


A relation R is called uniformly representable in T when there exists a formula F which uniformly represents R in T. 








Def6


A relation R will be called representable (not necessary uniformly) in T when there exist two formulas  F and G such that:


(A’)    If     R(A1,...,An) then  the formula Sub(F,\A1\,...,\An\) is theorem of T


(B’)   If   nonR(A1,...,An)  then  the formula Sub(G,\A1\,...,\An\)) is theorem of T,





(Freely speaking: nonR is represented by a formula which is not necessary the negation of the formula representing R.)


For general (non uniform) representability the analogon to Corollary 1 is not true. Hence one may define also the following notion of strong representability:





Def7


A relation R will be called strongly representable in T when there exist two formulas  F and G such that:


(A’’)    R(A1,...,An) iff  the formula Sub(F,\A1\,...,\An\) is theorem of T


(B’’)    nonR(A1,...,An) iff  the formula Sub(G,\A1\,...,\An\)) is theorem of T,





Now we shall prove the theorem about the uniform representability of Elementary Discernible relations: 





Theorem1  If T is consistent and contains LT1, then each ED relation is uniformly representable in T .  


Proof.  Of course by induction. 


We consider all conditions of the inductive definition of ED.


If  R is a singleton of an atomic text A where A is one the primitive signs: R={A}, then the formula representing R is   x1=\A\. Indeed:


(1)   If  A1=A then  \A1\=\A\ is the theorem of LT1


It is a consequence of x=x  assumed in the first order logical calculus (assumed in LT1). (And it is a meta-consequence of the univocallity of naming). 


(2)  If A1(A then neg(\A1\=\A\)  is the theorem of LT1


 The proof is a little longer: If  A1(A then we may consider two cases: A1  is an atom or not. If A1 is an atom, then A1 is an atom different then the sign A. Then the negation:


neg(\A1\=\A\) 


is one of the 120 negations assumed as the axiom A6.


	If A1 is not an atom, this means that there are two texts B and C such that:  A1is composed of B immediately followed by C. Then according to the Property 2. of naming the equality 


 \A1\=\B\*\C\ 


 is a theorem of LT1. Hence according to A3 and A4 we get also the theorems:


 (3)  \B\<\A1\	 and         ((\B\=\A1\)


When A is one of the primitive signs of LT1 then for some i (0<i<16) and according to the definition of naming the formula:  \A\=ti    is the consequence of x=x and is a theorem of LT1. Then according to A5 we get in LT1 the following formula:


 (4)   \B\<\A\ ( \B\=\A\


Thus from (3) and (4) it follows that the assumption that  \A\=\A1\ leads on the ground of LT1 to a contradiction. Hence  the formula: ((\A1\=\A\) is proved in LT1. This completes the proof for the first starting condition of the definition of ED relations.  





The relation of identity is, of course, represented in LT1 by the formula x/=x//.


Hence we need to prove that:


If  A1=A2 then   \ A1\=\ A2\  is a theorem of LT1


If A1( A2 then   ((\ A1\=\ A2\)  is a theorem of LT1


The first implication is trivial. The second will be proved by induction. Suppose that A1  differ from A2  by the first symbol. This means that there are such primitives B and C that for some i(j the formulas: \B\=ti   and  \C\=tj   are theorems of LT1. If B is the first symbol of A1  and A1 is composed only of this symbol, this means that B= A1  and the formula   \B\=\ A1\ is theorem of LT1. 


	On the other hand: if A2 is also composed only of one sign, then C= A2 and  \C\=\ A2\ is a theorem of LT1. But this case is reducible to the inequality of  primitives. Then from the axiom A6 it follows that if A1( A2 then  


 ((\ A1\=\ A2\)  is a theorem of LT1


	Thus we look at the case that A2 is composed of  C immediately followed by another text D. Hence according to the Property 2


(5)		\ A2 \=\C\*\D\ is theorem of LT1


Then the proof is reducible to the proof for the 1. starting condition (second case). So we shall consider the last case in which A1 is also composed of at least two signs. This means that for some E: A1 is composed of  B immediately followed by E. Hence according to Property 2 the formula:


 (6)		\ A1\=\B\*\E\ is theorem of LT1.


Applying the theorem T3 we get that:


(7)		 \B\*\E\ =\C\*\D\  ( \B\=\C\


is a theorem of LT1.  But B and C are different atoms, then ((\B\=\C\) is according to A6 a theorem, then also by  (5), (6) and (7)  ((\ A1\ =\ A2 \) is in LT1. 


	Now suppose that A1 and A2 do not differ on the first symbol. But they are different. Hence there is the first symbol F such that according to the Properties 1 and 2: the formulas:


  \A1\=(\G\*(\F\*\D\)) and   \A2\=(\G\*\C\)


are theorems of LT1. G is the common beginning  of both texts and \F\*\D\ differs from C by the first sign F of the first text. Then using the above reasoning we get that  (((\F\*\D\)=\C\) is in LT1. And applying the theorem T4 we get in LT1 the theorem:   ((  \A1\=(\A2\). This completes the proof for the second starting condition of the inductive definition of  ED relations. 





the relation of concatenation between texts is, of course, represented in LT1 by the formula:  x/=x//*x///. This means that: 


If  A1  is composed of  A2  directly followed by A3 , then \A1 \=(\A2 \*\A3 \)  is in LT1


If  A1  is not composed of  A2  directly followed by A3 , then ((\A1 \=(\A2 \*\A3 \))  is in LT1


The first implication is just proved as the Property 2. The second implication follows from the first one and from the representability of  the relation of identity. 


If we put B to be the text composed of  A2  directly followed by A3 , then the assumption of the second implication says that:    A1(B. Then from the representability of identity we get that the formula:


(( \A1\=\B\) is in LT1


On the other hand the Property 2 says that 


\B \=(\A2 \*\A3 \)  is in LT1


The both last premises give the required conclusion. 





The relation of inclusion between texts is represented in LT1 by the formula:  x/<x//.  This means the following two implications:


(A)	If the text A1 is contained in the text A2 then   \A1 \<\A2 \  is in LT1


(B)	If the text A1 is not contained in the text A2 then   ((\A1 \<\A2 \)  is in LT1.


The first implication follows directly from the Property 2, (the representability of concatenation), and the axiom A4. Consider one case: The text A1 is contained in the text A2 in such a way that there are two texts B and C such that A2 is composed from the text B immediately followed by A1 followed by C. Then according to the representability of concatenation the formula 


\A2 \=(\B\*(\A1 \*\C\)) is in LT1


Then according to the quantification rules and the axiom A4 also


 the formula  \A1 \<\A2 \  is in LT1.


	The proof of the implication (B) is not so immediate. Supposing that A1  is not contained in A2 we need to prove in LT1 the theorem:


(( \A1 \<\A2 \)  


According to A4 we shall prove in LT1 four theorems:  (( \A1 \=\A2 \)  


(I)  (z)(( \A2 \=\A1\*z)      (II)   (z)(( \A2 \=z*\A1\)      (III)   (z,y)(( \A2 \=z*\A1\*y)        


The first one is a consequence of the representability of identity. The others follow from the Property 3. Suppose B1,...,Bn be all texts which are contained in A2. If A1 is not contained in A2 , then for any i, if 0<i<n+1, then A1(Bi. To prove (I) we realize that according to the representability of concatenation for every Bi 


the formula: (( \A2 \=\A1\*Bi\)   is theorem of LT1.    


Thus according to the Property 3 also the formula:


(8)       (x)(x<\A2 \ ( (( \A2 \=\A1\*x) )     


is a theorem of LT1. Notice that according to A 4  the formula:


 \A2 \=\A1\*x ( x<\A2 \ 


is theorem of LT1. Then by the logical rule of contraposition also:


(9)      (x)(((x<\A2 \) ( (( \A2 \=\A1\*x) )     


is theorem of LT1. The theorems (8) and (9) together give (I). 


	The proof of (II) is analogical. 


To prove (III) we first realize that for every Bi and also for every Bj the formula:


(( \A2 \=Bi*\A1\*Bj)        


is a theorem of LT1. Then we use twice the generalization Property 3. First to obtain the generalization:  (x)((( \A2 \=Bi*\A1\*x))    like in the proof of  (I).  Then by the second application of the Property 3 we get (III). 





The converse relation to R is represented according to the Corollary 1 by the converse of the formula representing R. 


If we add to a  relation R(A,...,) a new argument and nothing suppose about it. This means we define a relation S(A,...,B) such that for any  A,...,and B:


S(A,...,B) iff R(A,...,)


then if R is uniformly represented by F, S may be uniformly represented by the  formula of the shape:	F ( xk= xk 	, where xk  is a new variable which is not free in F.


The relation obtained from R by identifying of arguments is represented by the formula obtained by identification of respective free variables in the formula representing the relation R. 


According to the Corollary 1 if  R is uniformly represented by the formula F, then nonR is uniformly represented by the formula  neg(F). 


If R is represented by the formula F and the relation S is represented by the formula G, then the relation  R or S is represented by the formula F!t/////////////!G. (t13 is the name of the sign of alternative. 


If R is represented by the formula F (with free variables x/,x//,...,xn ) and the relation S is defined by the use of restricted quantification: 


(10)       S(A,B...)  iff for any text C (if C<A then R(C,B...))


then the relation S is represented by the formula G (with free variables x, and x//,...,xn) which may be characterized in a non formal way as having the shape:


(x/)(x/<x ( F)


	We must show that:


(A)    If  S(A,B...) then Sub(G,\A\,\B\...) is a theorem of  T


(B)    If  nonS(A,B...) then neg(Sub(G,\A\,\B\...)) is a theorem of  T.


The text: Sub(G,\A\,\B\...)  is understood in such a way that the name \A\ is substituted for the variable x which is free in G. The other constant names \B\... are substituted for the variables x//,...,xn  which are also free in the formula F. The variable x/  free in F becomes, of course, bonded in G. 


	For the proof of the implication (A) consider all texts C1,...,Cm which are contained in A. According to the definition (10) of the relation S and to the representability of the relation R (to be assumed in the proof), for every Ci (0<i<m+1) there is in LT1 the theorem:


Sub(F,\Ci\,\B\...)


Hence according to the Property 4 the theory T contains the theorem:


(x/)(x/<A ( Sub(F,x/,\B\...)


Thus we get the implication (A). 


 


To prove the implication (B) let realize that if  nonS(A,B...), then according to the equivalence (10) there exists a text C such that C<A and nonR(C,B...). Hence if  R is represented by the formula F , then the formula: neg(Sub(F,\C\,\B\...)) is theorem of T. According to the Corollary 1, the uniform representability of the inclusion (point 4 of the proof), to the representability of sentential operations (points 6 and 7) and to the quantification rules we can deduce in T the formula: 


 (Ex/)(x/<\A\ ((( Sub(F,x/,\B\...))).


This formula is logically equivalent to neg(Sub(G,\A\,\B\...)) q.e.d.





Theorem2  If theory T is consistent and contains LT1 then every General Discernible relation is representable in T . There exists also a Theory LT2 which is a finite extension of LT1 such that for every Theory T, if T is consistent and contains LT2, then every GD relation is strongly represented in T. Moreover If T| is consistent and   LT1 ( T| ( T then every GD relation is strongly representable in T|. 


Proof. For the first part of the Theorem the proof is very simple. If  the relation R is GD, then according to the Def2 there are two relations S and T such that: 


G1          R(A...) iff there is such B that S(A,..,B)


 G2     nonR(A...) iff there is such B that T(A,..,B)


The relations S and T are ED. Hence according to the Theorem1 there are two formulas C and D such that C and D uniformly represent respectively the relations S and T in the theory T. This means according to the definition Def4  and the Corollary1 that 


(A)		S(A,..,B) iff Sub(C,\A\,..,\B\) is the theorem of T


(B)		T(A,..,B), iff Sub(D,\A\,..,\B\) is the theorem of T.


According to logical rules there are in T the theorems of the shape: 


(11)		Sub(C,\A\,..,\B\) ((Ez)(Sub(C,\A\,..,z))


(12)		Sub(D,\A\,..,\B\) ((Ez)(Sub(D,\A\,..,z))


From the premises G1, G2, (A), (B), (11), (12) we get that:


If 	R(A...) then the formula (Ez)(Sub(C,\A\,..,z)) is theorem of T


If 	nonR(A...) then the formula (Ez)(Sub(D,\A\,..,z)) is theorem of T,


this means according to Def6 that R is representable in T by the formulas F and G (with x/,... as free variables) which may be written informally as: 


F = (Ez)(Sub(C,x/,..,z) and 


G = (Ez)(Sub(D,x/,..,z)) .


	Now to prove the second part of our Theorem remember that:


LT1 ( LT2 ( T


According to the premises G1 and G2 we have that:


(13)		For every A there exists such a text B that S(A,..,B) or T(A,..,B).


Hence there is the smallest text B such that S(A,..,B) or T(A,..,B).  Let call it BA. Then we realize that: 


(14)			S(A,..,BA) or T(A,..,BA).  


(15) 		R(A) iff  S(A,..,BA)   and    nonR(A) iff  T(A,..,BA).  


And according to (A), (B)  and (14), (15) we have also that:


(16)		R(A)  iff  Sub(C,\A\,..,\BA\) is the theorem of T   


(17)		nonR(A)  iff  Sub(D,\A\,..,\BA\) is the theorem of T.





Now we define LT2. It arises from LT1 by adding one new axiom A8. A8 may be called: the axiom of lexicographical order. It is long and seems to be not very elegant. (Perhaps somebody will find a more elegant one.) In a very informal way A8 may be described as follows:


A8	 (x)(((0<x) ( (Ey)( x<y and the element y has the following structure: at the beginning there are names of primitive symbols except the symbol 0, but they are separated by the symbol 0. Then after them there are names of the texts composed of two symbols also separated by 0. Then after them there are names of the texts composed of three symbols separated by 0 and so on. The symbol 0 is used only as separator.) 


	Such a construction of y may be defined by some inductive conditions saying that we repeat always the operation of adding primitive symbols to the texts which are ordered before. We can use 0 as separator and we can construct also new separators 00, 000, ... and so on for some groups of texts. 


	The text y having such a property may be called well ordered segment. Then we prove that well ordered segments are well ordered. If  x and y are two different well ordered segments, then x is an initial part of y or vice versa. Hence A8 allows us to prove in LT2 the existence of well ordering of all elements of the considered universe. Then we can also prove in LT2 the equality: 


\BA\ = the first element z in the mentioned above well ordering for which: (saying quite informally):


 S(A,..,z) or T(A,..,z) holds.


	But on the ground of LT2 instead of  S(A,...,z) we must use the formula Sub(C,\A\,..,z)) because the formula C represents the relation S. And instead of  T(A,..,z) we must write in LT2  the formula Sub(D,\A\,...,z). 


Thus according to (16) and (17) we obtain the equivalences: 


(18)		R(A)  iff  Sub(W,\A\,..) is the theorem of T   


(19)		nonR(A)  iff  Sub(W`,\A\,..) is the theorem of T.


in which W means the formula with a free variable x,... and (speaking in an absolutely informal way) W is saying that it is true that S(x,..,z) for such z, which is the first element z in the mentioned above well ordering for which S(x,..,z) or T(x,..,z) holds, and respectively W` means the formula also with free variable x,... saying that it is true that T(x,..,z) for such z, which is the first element z in the mentioned above well ordering for which  S(x,..,z) or T(x,..,z) holds. 


	The equivalences (18) and (19) prove accordingly to Def 7 that the relation R is strongly representable in T. But we can conclude also that:


(20)		R(A)  iff  (Ez)(Sub(C,\A\,..,z))  is the theorem of T   


(21)		nonR(A)  iff  (Ez)(Sub(D,\A\,..,z)) is the theorem of T,


because the constructed well ordering allows to deduce that if there is a z such that Sub(C,\A\,..,z), then there is the first one. The same we prove for Sub(D,\A\,..,z). 


	Thus the same formulas F and G (defined above) which represent R and nonR in every consistent  T containing LT1 also represent strongly R and nonR in every consistent T containing LT2. 


	Hence consider now any theory T| such that LT1 ( T| ( T, where T contains LT2. According to the first part of our Theorem every relation R which is GD, is represented in T| by the formulas F and G. This means that the following implications hold:





(A’)    If     R(A,...) then  the formula Sub(F,\A\,...) is theorem of T|


(B’)   If   nonR(A,...)  then  the formula Sub(G,\A\,...) is theorem of T|.


But if T| ( T, then the formulas Sub(F,\A\,...) and Sub(G,\A\,...) if they are theorems of T| they are also theorems of T and according to the equivalences (20) and (21) 


they imply respectively  R(A,...) and nonR(A,...) .  Thus this proves that the implications (A’) and (B’) may be strengthen to equivalences. This means that R is strongly represented in T|. 





6. Discernibility and logical induction


	To show the power of the above definition of Discernibility I would like to point a general method of logical reduction of any inductive definition to an explicit definition of the first order.


	Suppose we define a notion K which is a relation of two arguments. Let consider the following general scheme of inductive definition: 





	Initial condition:  The relation K holds for some fixed pairs of the texts: Ai1, Ai2. These texts are explicitly showed (written).


	Inductive conditions:  For every  A,B,C,D,... if K(A,B) and K(C,D) and ..., and the texts A,B,C,D,... have a special (explicitly described) structure, then K(B,C). 


	Closing condition: The relation K is the smallest relation which fulfills the above two conditions.


	The definitions of addition, multiplication and many other mathematical notions are of this kind. Closing condition is, of course, of the second order. But for a finite ‘segment’ of the inductive definition of the relation K we can write a finite ‘logical diagram’ for the relation K. Such a finite logical diagram appears, as a rule, to be Elementary Discernible.


 	As a logical diagram for the relation K we can understand a text composed of a sequence of pairs separated by a conventional separator, such a sequence that every pair in this sequence is ‘justified’ by the preceding pairs according to the inductive conditions of the definition of K, or is one of the initial pairs: Ai1, Ai2,  for which the relation K holds according to the initial condition. As a separator we can use one of primitive signs which has no other use. Then the relation K may be defined as General Discernible. 


	Let take as an example the inductive definition of naming. 


Name of a text was defined in the section 4 as a function defined on texts and taking as values some other texts of a special kind. The function of naming will be defined now not for all texts but for texts which do not contain the symbol zero. The symbol zero will play the role of a separator. Hence according to the definition Def 3 a partial diagram for the relation of naming may be the following text: 00(0t/00)0t//00,0t///00x0t////00/0t/////00=0t//////00t0t///////00E0t////////00<0t/////////00


*0t//////////00(0t///////////00(0t////////////00(0t/////////////00(0t//////////////00x)0(t////*t//)00(x)0(t/*(t////*t//))00Ex)0(t////////*(t////*t//))00(Ex)0(t/*(t////////*(t////*t//))00


	The above text let be called  D0. It is a chain of links which have the following form:  00 a 0 b 00. In every link of this form  a  is a text which does not contain zero and b is the name of the text a constructed according to the Def 3. The first fourteen links are the ‘definitions’ of names for  14 primitives of our language. The 4 last links are ‘definitions’ of names for the following formulas:  x)   (x)   Ex)    (Ex).


	Notice that the text D0 has the following first order property P(D): 


For every A,B such that A<D and B<D, if A is a link i.e. A=zero!zero!B!zero!zero and zero!zero  is not contained in B, then for some C and U,  B=C!zero!U and C is one of the fourteen primitive symbols or there are in D two another links A` and A`` which are before A, this means that they have the structure: A`=zero!zero!B`!zero!zero and A``=zero!zero!B``!zero!zero, B` and B`` do not contain zero!zero, B`=C`!zero!U` and B``=C``!zero!U`` and they are such that: C=C`!C`` and 


U = left bracket!U`!asterisk!U``!right bracket.


	One can check that  P(D0). 


The above property, called  P, is a transcription of the inductive condition of the definition Def 3 of naming formulated as a condition for the diagram of the relation of naming. 


Now we can exactly define what is the diagram for the notion of naming:





Def 8   D is a diagram for naming  iff  for some text E  D = D0!E and P(D)





	Notice that all quantifiers in the formulation of the property P are restricted to the text D. Hence the above defined notion of diagram is  Elementary Discernible according to Def 1.


The segment D0 ensures that D contains all initial conditions of the definition Def 3 . The condition P(D) ensures the inductive condition. Hence the function  \A\  for any text A which does not contain zero may be defined as follows:


Def 9    B=\A\ iff  there exists D such that D is a diagram for naming  and for some C 


D=C!zero!zero!A!zero!B!zero!zero





	On the other hand we may prove that:


B(\A\ iff  there exists D such that D is a diagram for naming  and for some C and G


D=C!zero!zero!A!zero!G!zero!zero  and  B(G


All quantifiers except the first one bounding D are restricted to D.  Then according to the Def 2 we get the following conclusion: 





Corollary 2  The relation B=\A\  is General Discernible.





	Taking natural numbers as some texts (e.g. : /  //  ///  ////  etc) and using the same procedure we can prove that all primitive recursive arithmetical functions are discernible. Hence, of course, we get that general discernibility covers general recursiveness.





6. Undecidability of LT1, LT2, and undecidability of Logic. 


	Using the presented method one can prove very easily some undecidability theorems. 


Corollary 3  If  a  theory T is consistent and contains LT2 and  LT1( T| ( T , then T| is undecidable. 


Proof. Suppose T| is discernible. Then we define the following new set P:


Def 10	A(P iff  the formula of the shape:  (E x/)(x/=\A\ ( A)  belongs to T|


	First we notice that according to the logical rules of extensionality which are assumed in LT1, if A is a formula with one free variable  x/, then one can prove the equivalence:


 (22)		(E x/)(x/=\A\ ( A)  belongs to T|  iff  Sub(A,\A\) belongs to T|


From this equivalence and Def 10  we get that: 


(23)		If A is a formula with one free variable x/ then


A(P iff  Sub(A,\A\) belongs to T|


	On the other hand let us notice that an exact definition of the set P should the following:


A(P iff  (left bracket ! exists !eks !slash!right bracket!left bracket! eks!slash!ident!\A\!conju!A!right bracket) belongs to T| . 


Then we may prove that P is also discernible. The above Def 10  (definition of P) may be written as follows:


A(P iff  C!\A\!D!A!E ( T|


where C,D,E are some fixed texts. If T| is GD, then according to Def 2 the set T| is defined by two relations S and T which are ED and such that:


X ( T|  iff  for some B  S(X,B)


X ( T|  iff  for some B  T(X,B)


then we can define P also dually as follows:


A(P  iff  for some U(for some X,Y,B which are contained in U


U=X!B and Y=\A\ and X=C!Y!D!A!E and S(X,B) )


A(P  iff  for some U(for some X,Y,B which are contained in U


U=X!B and Y=\A\ and X=C!Y!D!A!E and T(X,B) )





	Hence according to the definitions Def 1 and Def 2 and to the Corollary 2 the set P is GD. 


According to Theorem2 the set P being GD is strongly represented in T|. This means according to Def  7 that: There exist formulas F and G with one free variable x/ such that: for every formula A: 


(24)					A( P  iff  Sub(F,\A\) ( T| 


(25)					A( P  iff  Sub(G,\A\) ( T|


Hence for the formula A=G we have:


(26)					G( P  iff  Sub(G,\G\) ( T|


On the other hand from the premise (23) we get that


(27)					G( P  iff  Sub(G,\G\) ( T|.


The premises (26) and (27) give a contradiction, which proves that T| is not GD. 


	In this exhibition (imitating of course the Gödel’s proof) the diagonalization is much evidently reduced to the liar antinomy than in the original arithmetical Gödel’s exhibition. 





Corollary 4  If the first order functional calculus is consistent, then it is undecidable


Proof. According to Corollary 3  LT1 is undecidable. It has a finite set of axioms. According to the Deduction Theory:


A ( LT1  iff  the implication  (the conjunction of axioms of LT1 ( A) ( Logic 


Hence we can easily prove, (using a construction analogical to the trick used in the proof of the Corollary 3,) that if Logic would be GD then also LT1. 





Some questions


	I would like ask the Colleagues: first the question how to join intuitive image of the ‘picture’ of a formula with its correct formal description in the meta-language? This concerns my incorrect style of presentation formulas of object language? Is it really intuitive for others, this what seems intuitive for me? 


	The satisfaction of clarity is valuable for philosophically oriented logicians. The exact presentation of some arguments in this approach to metalogic seems to be a very good logical exercise. 


	There are also more serious questions. I mean, of course, first of all the question concerning the logical hierarchy of restricted (bounded, limited) quantification in the class of Elementary Discernible relations. 


(my address   agrzegor@ifispan.waw.pl.   )
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