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ABSTRACT



This paper focusses on economic applications of the concept of “information” embodied in Shannon’s (1948) Mathematical Theory of Communication. After a brief summary of this theory, it discusses the first attempts to make economic sense of the information concept, and provides an explanation for the failure of those attempts. It then deals with the origins of the concepts of  “computation” and “complexity”, which have recently started to play an important role in economic theory, and which are shown to be closely related to Shannon’s information measure. A conclusion of the paper, therefore, is that the applicability of information theory to economics must be seriously reconsidered.

�Information, Computation, and Complexity in Economics





Theoretical developments in economics have a tendency to follow those in physics, mathematics, and, more recently, computer science, albeit with a significant lag. As is well-known, for example, many of the tools used in today’s economic textbooks were directly adopted from nineteenth century physics, at the very moment (1870s) that physics itself had begun to change in the direction of probabilistic thermodynamics, relativity and quantum theory.� Similarly, game theory was adopted by economists at a time (1970s) when its originator, John Von Neumann, had long since shifted his interest toward subjects such as The Computer and the Brain (1958) and the Theory of Self-Reproducing Automata (1966), which inspired a literature that has only recently started to attract economist’s attention. Finally, some thirty years after the establishment of the computer science to which Von Neumann’s work contributed, we witness the emergence of a “computational economics” in which economic agents are redefined as information processors with limited computational capabilities, just as computer scientists are proposing a phase transition from artificial intelligence toward “artificial life”.�

	Theoretical development, of course, is never independent of the development of society as a whole, and this is particularly so for developments related to information and computation. During the first decades of this century, it was the invention of telegraphy, radio, and television, which resulted in a new branch of electrical engineering that focussed around the concepts of control, communication, and information. Claude Shannon’s (1948) Mathematical Theory of Communication attracted the attention of many scientists, in particular because his definition of the “amount of information” in a communication system turned out to be formally equivalent to Boltzmann’s measure of “entropy”. Because of its apparent generality, and their positive experience with interdisciplinary collaboration during World War II, they started to apply this new “information theory” to several other domains. Some of these attempts were very successful, and it might not be too much to say that information theory was in fact one of the main factors which, through its influence on computer science and the development of actual computers, turned the twentieth century into the age of “information”.

	In economics, it was not until 1976 that the American Economic Association added the words “and information” as an addition to the entry “Economics of uncertainty” in its Index of Economic Journals.� Although the word “information” came to be used increasingly more frequently, it was never clearly defined. Since it was essentially treated as a commodity, its value was naturally conceived of in terms of profit, utility, and cost, of which Shannon’s definition was found to be an unsuitable measure:



“Shannon’s well-known measure of the quantity of information... was formulated to serve the specific needs of communications theory, and has been found unsuitable for application in economics.” (Dasgupta & David 1994: 493n)



By modeling economic agents as information processors, who attach subjective probabilities and values to objective “states of nature”, economists appeared to have turned their discipline into an “information science”. Until recently, however, very little attention was paid to questions such as how exactly economic agents are able to transform the objective data into a subjective probability distribution, under what conditions they are able to arrive at “perfect information”, or how they should practically go about computing their maximum expected utility solutions.

	Such analyses have now begun to become carried out under the heading of “computational economics”. Drawing upon computational complexity theory, neural networks, and the theory of automata, economists have started to represent economic agents as Turing machines, the preference orderings, choice functions, and strategies of which can be computed to have a certain computational complexity. Given the computational constraints of the human mind, many economic optimization problems can be proven to be uncomputable, both for economists and for economic agents.

	This paper starts with a brief summary of Shannon’s (1948) Mathematical Theory of Communication, as applied to the case of discrete communication systems with and without noise. The first attempts to make economic sense of this theory, and, in particular, of Shannon’s information measure, are discussed in section 2. Section 3 then deals with the origins of the concept of “computation, and section 4 with that of “complexity.” As it turns out, the notion of “complexity”, in terms of which many computational economic problems are now being analyzed, is closely related to the entropy measure. A conclusion of this paper is, therefore, that the applicability of information theory to economics must be reconsidered.





1. INFORMATION



Although he is commonly regarded as the founding father of information theory, the engineer Claude Shannon did not present his Mathematical Theory of Communication as radically new. Rather, he considered it as an extension of an already existing theory, the basis of which he considered to be contained in “the important papers” of his Bell Lab colleagues Harry Nyquist and R. V. Hartley (Shannon 1948: 3).

	The 1924 paper by Nyquist, to which Shannon referred, was one of the first examinations of the theoretical bounds for ideal codes for transmission of information. The practical engineering problem he was concerned with, was how to improve the speed at which “intelligence” could be transmitted over telegraph wires, by which he meant “the number of characters, representing different letters, figures, etc., which can be transmitted in a given length of time”.� Nyquist proved that the maximum transmission speed obeyed the equation W = k log m, where W was a measure of speed, k was a constant, and m represented the number of current “values” that could be transmitted. 

	The paper by Hartley (1928), another research engineer at Bell Labs, addressed the theoretical limits of information transmission over both wire and radio paths. In his effort to establish a quantitative measure to compare the information transmission capacities of various systems, such as telegraphy, telephony, television, and picture transmission, Hartley had arrived at the rule H = k log sn, where H denoted the amount of information, k a constant, s the size of the set of symbols, and n the number of symbols in the message, so that sn could be interpreted as the number of possible symbol-sequences of length n that could be transmitted.

	It was for the development of these logarithmic laws for communication that Shannon was indebted to Nyquist and Hartley. Shannon’s theory, however, was more general. It was not restricted to any particular communication system, but turned out to be applicable to the transmission of any sort of information from one point to another in space or time. The generality of Shannon’s theory was noticed by Warren Weaver, who popularized it accordingly, to the extent that he was listed as Shannon’s co-author when The Mathematical Theory of Communication was published as a book in 1949.



1.1 Communication Systems

Central to the theory of Shannon and Weaver is the notion of a “general communication system”, the elements of which can be represented as “mathematical entities, suitably idealized from their physical counterparts” (Shannon 1948: 6). A general communication system can be partitioned into five parts. The first part is the information source, which produces a message, or a sequence of messages. “Messages” consist of one or more functions of one or more variables, basically space and time, which in turn may constitute, e.g., letters, light, or sound. The second part is the transmitter, which translates the initial message into a signal suitable for transmission. Telephone transmitters, for example, change sound pressure into electrical current, whereas telegraph machines transform letters into a sequence of dots, dashes and spaces. Third, there is a channel, such as a pair of wires or a band of radio frequencies, to transmit the signal from transmitter to receiver. The fourth part is the receiver, which reconstructs the message from the signal, thus performing the inverse operation of that done by the transmitter. Finally, there is the destination, that is, “the person (or thing) for whom the message is intended.” (1948: 4-6)

	During transmission, the signal may be perturbed by noise. The noise source is not an element of the communication system itself, but belongs to its environment. It acts upon the channel in such a way that the received signal might turn out to be different from the transmitted signal. As was noted by Hartley (1928), the existence of such noise limits the rate of selection at which differences between transmitted symbols may be distinguished with certainty.

	Shannon classified communication systems into three main categories: discrete, continuous, and mixed. While Hartley had also addressed both discrete and continuous transmission of information, the introduction of a “mixed” category was new. For simplicity, we will limit the discussion below to discrete systems only.



1.2 Discrete Communication Systems Without Noise

A discrete communication system is a system in which both the message and the signal are sequences of discrete symbols. In the case of telegraphy, investigated by Nyquist (1924), the message is a sequence of letters and the signal is a sequence of dots, dashes and spaces. As an example, elaborated by Theil (1972), one might consider the situation in which both the message and the signal are statements about the occurrence of event E, the nature of which is unimportant, but the probability (p) of which is known. When a signal is received stating that E in fact occurred, the amount of information conveyed by this signal can be measured solely in terms of its probability, and without any reference to the “meaning” of the message.

	In a noiseless communication system, the probability of E is equivalent to the probability of the message and, in turn, the probability of the signal stating that E has occurred. What, then, is the relation between this probability and the “amount of information”? To Shannon it was intuitively obvious that they should be inversely related. When p is close to 1, a signal conveying that E actually took place can be said to contain very little information, since it had already been expected. Conversely, when p is very small but E nevertheless occurs, a signal stating this occurrence could be considered highly informative, precisely because it was considered so improbable.

	In order to formalize this inverse relationship, the amount of information of a signal needed to be expressed as a monotonically decreasing function of its probability. Following Nyquist and Hartley, Shannon suggested that the logarithmic function, or rather, its negative, would best meet this requirement, since it decreases from +( to 0 as p increases from 0 to 1. Thus, the amount of information was defined as



H(p) = - log p,





and was measured using base 2, so that a signal concerning a 50-50 event could be said to produce exactly one unit of information:



H(½) = log2 2 = 1.



	Obviously, the logarithmic function is not the only continuous and monotonically decreasing function for which H(0) =+( and H(1) = 0. However, as Shannon and others have shown, it is the only function that satisfies, in addition to the properties of continuity and monotonicity, the condition of additivity, which makes it “practically more useful”, “nearer to our intuitive feeling”, and “mathematically more suitable”.�

	As an illustration, consider two events, E1 and E2, with probabilities p and q. In a noiseless communication system, a message or signal stating that E1 has happened has the same probability as this event itself, and hence conveys an amount of information equal to 



H(p) = - log p.



Similarly, the information of a signal stating the occurrence of E2 is measured by the amount



H(q) = - log q.



Now how does one measure the information of one signal stating that both E1 and E2 have happened? Let us first suppose that the events are completely independent. In that case we may write



pr(E1, E2) = pr(E1) pr(E2),



so that



H(p,q) = - log pr(E1) pr(E2) 

= - log pq

= - log p - log q

= H(p) + H(q)



In other words, in the case of two independent events, the information amount of one signal stating the occurrence of both events is equal to the sum of the information amounts of two signals which state these occurrences separately. This result is intuitively appealing, which is one of the reasons why Shannon considered the logarithmic function as superior to functions without the property of additivity. The property remains useful even when events are not independent, since, by Bayes’ rule,



pr(E1, E2) =  pr(E1) pr(E2|E1)



Therefore, we can write



H(x,y) = - log pr(E1)pr(E2|E1)

= - log pr(E1) - log (E2|E1)

= H(p) + H(q|p)



Obviously, the same formula holds with E1 and E2 interchanged, and it captures the special case of independent events, for which H(q|p) = H(q).

	Another special case is that of mutually exclusive events, where the sum of all probabilities equals one. This is the case we will most frequently refer to. Imagine a situation in which only two possible signals can be received, the first of which states that E has occurred, and the second that E has failed to occur. If the probabilities are equal (p = 1-p = 0.5), both signals convey an equal amount of information. If the probabilities are different from each other, however, the amount of information conveyed by the first signal is different from the amount of information conveyed by the second. For instance, when the probability that E occurs is high, a signal that confirms this occurence provides almost no information, whereas a signal stating the nonoccurrence of E is very surprising, and therefore highly informative. The amount of information of the latter signal, namely, is expressed by



H(1-p) = - log (1-p),



which for p > 0.5 is larger than H(p).

	It should be noted that, since E cannot occur and not-occur at the same time, the amount of information from the signal-to-be-received is either H(p) or H(1-p). Before a signal has been received, the actual amount of information is not known. However, when the probability of receiving either signal is known, the expected information can be calculated. As noted before, in a noiseless system the probabilities of the two possible signals are exactly equal to the probabilities of the occurrence and nonoccurrence of E. Thus the expected amount of information of the signal sent is:



EH(p) = pH(p) + (1-p)H(1-p)



= - p log p - (1-p) log (1-p)



As can be easily calculated, this function attains its maximum when the two probabilities are equal, and the value of this maximum is log2  2 = 1 bit.

	In the more general case with n mutually exclusive events E1,....,En, the respective probabilities of which add up to one ((i pi = 1), the expected amount of information is given by the function



EH(p) = - (i  pi  log pi ,	 i = 1, . . . , n.



which attains its maximum at



pi = (1/n), 	(i = 1, . . . n.



This gives as the maximum value of expected information



H* = maxp EH(p) = - log (1/n) = log n,



which is monotonically increasing in n.�  In other words, the maximum expected amount of information of a signal increases with the number of possible signals. This is why Shannon stressed, apart from the intuitive attractiveness and mathematical convenience of logarithmic measures, their “practical usefulness” for engineering purposes: the amount of information varies, just like parameters such as time, bandwidth, or number of relays, linearly with the logarithm of the number of possibilities. Just like doubling the time available per symbol, the doubling of H* squares the number, and doubles the logarithm of possible messages.



1.3 Discrete Communication Systems With Noise

When a communication system is perturbed by noise, the received signal is different from the signal produced by the transmitter. Although the problem of noise had been addressed before by Hartley (1928), one of Shannon’s major contributions was to show that information theory could easily be extended to noisy systems by interpreting H(x) as the amount of information of the signal sent, and H(y) as the amount of information of the signal actually received. His suggestion was, then, to interpret H(y|x) as the amount of received information due to noise (corresponding to the probability of receiving y given that x was sent), and to take H(x|y) as the amount of missing information, that is, the amount of additional information that would have to be sent in order to correct the received signal. The joint information conveyed by x and y, expressed as



 H(x,y) = H(x) + H(y|x) = H(y) + H(x|y),



could then be interpreted as the amount of information sent plus noise, or equivalently, as the amount received plus the missing information.

	By means of these definitions, Shannon was able to define the rate of transmission of a communication channel as 



R(x,y)  = H(x) - H(x|y)   =  H(y) - H(y|x)



that is, the amount of information sent minus the missing information or, equivalently, the total amount received minus the part due to noise. Alternatively, the rate of transmission could be written as



R(x,y)  = H(x) +  H(y) - H(x,y)



which is the sum of the two amounts minus the amount of their sum, and therefore in a sense is the number of bits common to the two, or their “mutual information”.� 

	Finally, the maximum rate of transmission was termed the capacity, and the ratio of the actual to the maximum rate was called the efficiency of a communication channel.�





2. THE ECONOMICS OF INFORMATION

The first economists who came to share the fascination with the concept of information were Jacob Marschak and Kenneth Arrow. During and after World War II, they had been actively engaged in interdisciplinary institutions such as the Cowles Foundation, the Office of Naval Research, and the RAND Corporation. It was here, probably, where they learned about the new “information hype”, and decided to construct an “Economics of Information”. Subsequently, they spent several years trying to make sense of Shannon’s definition as a measure of the “value of information”.



2.1 The Utility of Information

In 1959, Jacob Marschak published a paper called “Remarks on the Economics of Information”. The paper was started under a contract of the Office of Naval Research with the Cowles Commission for Research in Economics, had been completed during the author’s year on a rotating visiting research professorship at the Carnegie Institute of Technology (now Carnegie Mellon University), and was presented at the inauguration of the Data Processing Center of the Graduate School of Business Administration at UCLA. Since this center was dedicated to the joint work of engineers, economists, and mathematicians, Marschak’s paper was explicitly addressed to these three groups of scientists. 

	Marschak started his lecture by noting that engineers and economists use different criteria: “In deciding between alternative devices, instruments, processes, it is natural for an engineer to look for purely physical criteria, goals that are independent of the needs of the human user. The economist’s criteria are rooted in human needs and tastes, profits and utilities, and this makes him a nuisance” (1959: 91).

	In Marschak’s view, the Streit der Fakultäten between economists and engineers was due to a confusion of tongues. He therefore suggested that both groups could benefit from collaborating with mathematicians, who were known to specialize in precise and consistent definitions. However, this should only be done “provided that the formal similarity of mathematical expressions does not prevent us from distinguishing between their various possible physical, or economic, interpretations.”(1959: 92) This, claimed Marschak, was the danger involved in the use by economists of a “statistical distribution parameter called entropy... [which] measures, in some sense, the “degree of uncertainty” [and] also has mathematical properties that enables Shannon (1948) to use it as a measure of the amount of information”. 

	In Marschak’s opinion, the amount of information was strictly an engineering parameter, because it did not depend on the particular uses to which the information would be put. Economists, on the other hand, were interested in something different, namely, the value of information, which of course could not be treated independently of the user. “If... the user asks “How much is the information worth to me?”, “How much am I willing to pay for it?”, it is natural that the answer about this quantity (for which the term “value of information” suggests itself) will vary from user to user” (Marschak 1959: 92). Nevertheless, Marschak noted, “attempts have been made to show that if the value, or worth, of information to its receiver is defined in some appropriate way it can yet be made independent of the user; more than that, it will be measured precisely by the entropy formula.” (Ibid.)

	The main “attempt” Marschak had in mind here was an article by Shannon’s Bell Labs colleague J. L. Kelly, called “A New Interpretation of Information Rate”, which had been published in 1956 in The Bell System Technical Journal and apparently had benefited from the assistance of Shannon himself.� In this paper, Kelly had followed Shannon’s original device to talk about information and communication without referring to their semantic aspects, that is, independent of the meaning or importance of messages to their senders and receivers. Moreover, he claimed to have succeeded in attaching a value measure to a communication system, without thereby introducing an arbitrary “cost function” which tells us “how bad it is to receive a certain symbol when a specified signal is transmitted” (1956: 918).

	Interestingly, Kelly had not denied that such a function, which would express the subjective “cost” of particular errors, and “benefits” of particular messages, could be derived from “the utility theory of Von Neumann”.� In his view, however, “utility” was not an adequate measure of the value of a communication system, since it “would depend on things external to the system and not on the probabilities which describe the system” (1956: 918). As an alternative measure of the value of a communication system, he therefore proposed to use the maximum rate of profit attainable by a gambler who makes bets on the occurrence of chance events, on the basis of messages about these events transmitted by the system. In a simple model, this rate was shown to be exactly equal to the rate of transmission as defined by Shannon, which was interpreted by Kelly as the “value” of a communication system. Since this value was independent of the utility attached to the gains and losses, Kelly claimed that his gambler followed “an essentially different criterion from the classical gambler. At every bet he maximizes the expected value of the logarithm of his capital. The reason has nothing to do with the value function which he attached to his money, but merely with the fact that it is the logarithm which is additive in repeated bets and to which the law of large numbers applies.” (925-6)

	Marschak did not agree with this interpretation. In his view, Kelly had not managed “to avoid the concept of a criterion (payoff) function whose expectation is being maximized” (1959: 115n). Kelly’s gambler, according to Marschak, was behaving “as if” he were maximizing a logarithmic utility function, and it was the value of this maximum expected utility, rather than the value of the communication system, that was equal to Shannon’s definition of the rate of transmission of a communication channel. To complete the confusion, Marschak called this rate the value of “information”, where in his view



“the word “information” never denotes a single message but rather a set of potential messages associated with a given instrument (source or channel) of information. The man who buys a newspaper does not know beforehand what will be in the news. He acquires access to potential messages belonging to a set called news.” (1959: 92-3)�



By interpreting the rate of information transmission as a measure of “how useful or important are, for [a] particular person, the messages that he will obtain from the given information instrument” (1959: 93), Marschak could say he had falsified Kelly’s claim that the utility of information (instruments) “could not be identified with the rate as defined by Shannon.” (1956: 918) He thus, in fact, admitted that the same mathematical quantity could be used as both an engineering and an economic criterion, but only in the special case that the criterion function, which he interpreted as “maximum expected utility”, was logarithmic.



2.2 The Value of Inquiry

At first sight, the idea to use the rate of transmission of a communication system as a measure of its “value” was not all that strange. As long as the messages sent were assumed to be correct statements about the state of the world, and as long as it was assumed that the receiver of such statements could turn them into “value” (either capital or utility), it seemed plausible that, the better a system transmits these messages (i.e., the less it is disturbed by noise), the more “valuable” it is to its user.

	However, Shannon’s rate of transmission depended not just on the amount of noise in the system (measured by the probabilities of incorrect and correct transmission, p and q), as Kelly assumed, but also on the amount of information of the message originally sent:



		R(x,y)  = H(x) - H(x|y) = - log x + p log p + q log q,



where x denotes the probability of the message sent, or equivalently, the probability of the event announced by that message.

	Because both Kelly and Marschak assumed equal probabilities, and used 2 as the logarithmic base, H(x) in their model was equal to - log2(½) = log2 2 = 1. While in Kelly’s approach this number had a clear meaning (a maximum rate of capital growth of 100%), in Marschak’s interpretation the meaning of H(x) was not that clear at all. Since his utility function was itself logarithmic, expected utility was measured not in percentages but in absolute units of utility, so that H(x) = 1 was simply one “util”.

	In his 1959 article, Marschak managed to eliminate this problem by claiming that his utility measure was in fact a measure of relative rather than of absolute value, namely, the maximum value attainable with, minus the value attainable without, an information instrument, or V1 - V0. In an earlier article, written in 1954 (two years before the publication of Kelly’s paper), Marschak had called this relative value “the value of inquiry”. Since in Kelly’s model, the maximum expected utility obtainable without “information” was zero (under the assumption of fair odds), the value of “inquiry” could be equated with the value of value of the “information instrument”.

	In his 1954 paper, however, Marschak had argued that the value of “inquiry”, depended on both the “objective” probability distribution of the messages and their “subjective” utility. His model depicted a situation where an individual maximized her expected utility as a function of her actions a, and of the “state of the environment” x. Under the assumption that the individual knew the distribution F(x), the expected value of her “inquiry” could be measured by calculating the difference between the individual’s maximum expected utility with and without “information” about x. On the basis of this analysis, Marschak concluded that



“the value of an inquiry, w, depends on both the distribution F(x) and the payoff function u(a,x). The amount of information as defined by Shannon (or its negative, the “entropy” or “uncertainty” or “randomness") depends on F(x) only, as does the amount of information defined by R.A. Fischer. As a result, the value of an inquiry, for a given payoff function, need not coincide with, or be related in any simple way to, the amount of uncertainty in Shannon’s sense. (...) The concepts of value of inquiry and of amount of information are thus different. They serve different purposes.” (1954: 47)



Kenneth Arrow did not agree with this conclusion. In an article called “The Value of and Demand for Information” (1971), he showed that there was one case in which the value and amount of information would in fact not be different.



2.3 The Value of Information

Like Kelly, Arrow considered a communication system that would transmit messages about the occurrence of events, or what he called “states of nature”, on the actual occurrence of which people could make bets and earn a profit.� The odds on the occurrence of state of nature i were called Xi, meaning that an individual who made a bet on state i would receive Xi on each dollar bet if state i  did in fact occur. By defining ai as the proportion of income bet on state i, with (i ai = 1, the total return on a bet on state i could then be expressed as



(i ai Xi 



which had to be clearly distinguished from the utility of the total return on a bet on state i



U(ai Xi).



This term, in turn, had to be clearly distinguished from the expected utility of the total return on a bet on state i,



EU(aiXi) = (i piU(ai Xi),



where pi denoted the probability of each state.

	Just as Marschak (1954) had defined the “value of inquiry”, Arrow defined “the value of information” as the difference between V0, i.e. the maximum expected utility of the total return from making bets in the possession of “information”, and V1, the same quantity in the case without information.

	If an individual had “perfect information”, i.e., if the messages about the actual state of the world were transmitted by a noiseless communication system, he would bet all his money on this state (ai = 1) , so that his return would be Xi. For the special case of a logarithmic utility function,



U(ai Xi) = log ai Xi,



the maximum expected utility of a perfectly informed individual would be



				V1  	= max EU(Xi) = (i pi log Xi



(with pi equal to 1), whereas the expected utility of a perfectly uninformed individual would be maximized for ai = pi, so that



				V0 	= max EU(pi Xi)

					= (i pi log (pi Xi)

					= (i pi log pi +  (i pi log Xi.



The “value of information”, then, was shown to be equal to



			V1 - V0		=  (i pi log Xi -  ((i pi log pi +  (i pi log Xi)	

					= -(i pi log pi



which was exactly equal to Shannon’s measure of the (expected) amount of information.

	While Arrow had thus shown, like Kelly and Marschak, that the value and amount of information needed not be different, he did stress that the logarithmic shape of the utility function was a conditio sine qua non for the analogy to hold. His main point was not that a logarithmic utility function could yield a value of information that was independent of the rewards, but rather the reverse, that “if the value of information is independent of the rewards, then the utility function must be logarithmic” (1971: 110). In other words: “The simplicity of the solution in the logarithmic case will not generalize.” (1971: 114)

	Finally, while Marschak emphasized the fact that the value of information could vary from user to user, Arrow suggested that the amount of information itself could be considered subjective as well. That is, he allowed for the possibility that probabilities of (messages about) the states of the world themselves could be taken as subjective, in the sense that they did not necessarily have to correspond to the objective probabilities determining the amount of information transmitted through the communication system.

	As we will see below, these criticisms and suggestions have been taken into account by more recent attempts at transforming economics into an informational or, rather, computational science. In order to analyze the computational capacities of economic agents, computational economists have started to use computer science tools such as Turing machines, neural networks, cellular automata, and complexity measures. In the next section we will discuss the origins of these tools, after which we will show how they are related to information theory.



3. COMPUTATION

Although they emphasized the generality of their theory, Shannon and Weaver did not go as far as to consider the mind as an information processing system, and intelligence or knowledge as the outcome of receiving and processing of this information. While this idea is more or less common sense today, it took a while before psychologists, neurologists and computer scientists came to accept it. 

	During the second half of the nineteenth century, the successful introduction of the concept of “energy” had created high expectations for the possibility of a unified science, and it had led to theories of the mind as a manipulator of biological energies. By the turn of the century, however, several psychologists had started to revolt against the dominant “introspective” approach of Wilhelm Wundt and others, and they began to argue for the adoption of a more “scientific” attitude. Among other things, this led to the emergence of a field called physiological psychology, which was brought to prosperity in the 1930s, when it became possible to make exact measurements of the electrical activity of the brain. 

	At the same time, American behaviorists, who adopted a different approach, proposed to replace ambiguous concepts such as “sensation”, “feeling”, and “image” by more exact terms like “effector”, “receptor”, and “learning”. They also started conducting experiments, using the condition-response method. By concentrating on behavior rather than on consciousness, they paved the way for a breakdown of the distinction between the mental behavior of humans and the information processing of lower animals and machines.

	A final step in the direction of a “computational psychology” was the general adoption, under the influence of William James, of a functionalist approach, according to which psychology should concentrate on the functional operation of the brain, and in particular on the dynamic mental activity of information processing rather than on static states of experience. (cf. Aspray 1985: 127-8)



3.1 Gödel’s Theorem

While the developments in psychology set the stage for a mathematical theory of the brain as information processor, the major contributing factor to, what Crevier (1993: 28)  called the “paradigm shift away from energy to information processing”, came from the field of mathematical logic. In 1920 the mathematician and logician David Hilbert had set himself the aim of providing a new logical foundation for mathematics. His hope was to save the remarkable achievements of 19th century mathematics, while settling the worries about their consistency that had been expressed in the early 20th century. In 1931, the young Austrian logician Kurt Gödel showed in a devastating way that Hilbert’s program, i.e. the attempt to derive the whole of mathematics from a deterministic system of axioms, could never succeed, the reason being that the consistency of a consistent system of axioms cannot be proven within this same system.

	Although Gödel’s theorem was generally accepted, it itself did not appear to be provable. While it could be shown to be true for any particular attempt to axiomatize mathematics, such as Russell and Whitehead’s Principia Mathematica, it could not be proven in general. What was needed was an algorithm for determining, of any given statement, whether it is an axiom of the system in question, or whether it could be proven from the axioms. It seemed to be the case that such an algorithm did not exist. (cf. Barwise & Etchemendy 1993: 12-7)

	In order to prove this hypothesis, and to understand the limits of algorithms, the notion of an algorithm itself had to be analyzed. This problem was taken up by logicians like Church, Kleene, and Turing, who started providing the first formal characterizations of the process of computation. Of these attempts, Alan Turing’s (1936) analysis was definitely the most sophisticated one, and also the one found most compelling by Gödel himself.



3.2 Turing’s Thesis

Following Hilbert, Turing started out by shifting attention away from mathematical objects to the symbols used to describe these objects, and then to think of algorithms as procedures involving the manipulations of those symbols. He then went on to imagine a deterministic machine carrying out the algorithms by reading and writing the symbols, one by one, on an arbitrary long, one-dimensional tape. The physical nature of this “Turing machine”, as it came to be known, was unimportant. The only thing required of it was that it could perform a limited number of basic operations: read, erase and write symbols on the tape; move left, and move right. If these requirements were fulfilled, Turing conjectured, the machine would be able to perform any algorithm. 

	This conjecture, which became known as Turing’s Thesis, was, like Gödel’s Theorem, never proven, but it did become generally accepted. Accordingly, algorithms came to be defined as those symbolic procedures which can be carried out by a Turing machine. This definition was not a mere tautology, since the Turing machine was thought of as “universal”, i.e. as able to compute any algorithm that could be computed on any alternative machine. Algorithms that could not be computed by a universal Turing machine (UTM) came to be called uncomputable, and Turing showed that the procedure searched for by Hilbert was an example of an uncomputable problem. That is, he proved that a procedure that for every formally statable mathematical assertion, determines the truth-value of the assertion, cannot be carried out on a Turing machine.

	The value of Turing’s contribution was not restricted to the foundations of mathematics, however. In addition, his results on the theoretical limits to computation turned out to be of considerable practical importance to the development of electronic computing devices. But most importantly, Turing and his colleagues had flirted from the beginning with the idea of considering their models as formal characterizations of the human computational process. Like the recursive functions proposed by Gödel, Church, Kleene, and others, Turing machines were explicitly designed to provide a formal analog of how human agents would carry out computations. As such, they were a first step in the direction of artificial intelligence.



3.3 Neural Networks

While Turing had intended his machine to mimic the human thinking process, it soon came to be regarded as something that could help explain the biological functioning of the brain. Important work in this respect was done by Warren McCulloch and Walter Pitts (1943) who used the concept of a Turing machine to characterize nerve systems, in particular human neuron nets.

 	McCulloch was trained within the psychological tradition of experimental epistemology. After his undergraduate studies in philosophy and psychology, and his graduate studies in the physiology of the nervous system, he became professor of psychiatry at the University of Illinois at Chicago, where he started his collaboration with Walter Pitts. Like Pitts, who had studied mathematical logic under Carnap at the University of Chicago, McCulloch had an interest in problems involving the logic of relations. His aim was to develop a “psychology of propositions” by subscripting symbols for propositions, connected by implications, with the time of occurrence of the impulse in each neuron (cf. Aspray 1985: 129). Pitts, whose background was more mathematical than McCulloch’s, provided McCulloch with the requisite mathematical theory - a combination of Carnap’s logical calculus and Russell and Whitehead’s Principia Mathematica -, which led to a joint paper called “A Logical Calculus of the Ideas Immanent in Nervous Activity”.

	In this paper, which was published in 1943, McCulloch and Pitts presented a model in which they argued for a functional similarity between Turing machines and the neural networks of the brain. Under the assumption that neurons obeyed certain mathematical rules for the transformation of input signals into output signals, networks of neurons were shown to be capable of carrying out any information-processing task, just like universal Turing machines. While this “black boxing” of individual neurons was criticized by psychologists and physiologists, the formalization of the mind-machine metaphor was regarded by others as an important step in the direction of a general theory of information processing.

	From the 1940s onwards, theories of minds and machines continued to co-evolve. Just as the development of Turing machines had stimulated the philosophy of mind, McCulloch & Pitt’s neural networks enhanced a further growth of computer technology. The main actors in this respect were Norbert Wiener, who’s aim was to establish a universal information science called “cybernetics”, and John Von Neumann, who used cybernetic concepts for the design of actual computing machinery. 



3.4 Cybernetics

In the 1950s, an important cooperation started to take place between McCulloch and Pitts on the one hand, and Norbert Wiener, professor of engineering and mathematics at MIT, on the other. In 1948, Wiener had proposed “to call the entire field of control and communication theory, whether in the machine or in the animal, by the name of Cybernetics.” (Wiener 1948: 19). He regarded the work of Pitts and McCulloch as a major contribution to the development of a general theory of the communication and control of information, which would be applicable to mechanical, mental, and even biological systems.

 	The word cybernetics was derived from the Greek kybernetes ("steersman"), which is related to the Latin gubernator, or the English governor. Wiener had chosen this term to emphasize the importance of feedback control. The governor on a steam engine, for instance, is a feedback mechanism that increases or decreases the speed of the engine depending on its current speed. If the current speed is too high with respect to a certain standard, the governor makes it slow down; conversely, when the engine is too slow, the governor speeds it up. This type of negative feedback mechanism was, in Wiener’s view, the essence of control. It could be found in inanimate as well as living systems; e.g. in maintaining a certain temperature in buildings or bodies.

	Perhaps because of this relationship with thermodynamics, Wiener saw that the mathematics of feedback control was closely associated with aspects of statistical mechanics and information theory. His book Cybernetics: or Control and Communication in the Animal and the Machine, happened to be published in the same year as Shannon’s Mathematical Theory of Communication, and apparently there had been several instances of cross-fertilization before the publication of the two books.�

	Another important scientist was John von Neumann, who pointed out to Shannon one of the most striking elements of his theory, namely, the formal equivalence between his definition of “information” and Boltzmann’s entropy measure.� This tie between thermodynamics, statistical mechanics, and communication theory suggested that, as Aspray (1985: 124) put it, “communication theory involves a basic and important property of the physical universe and is not simply a scientific by-product of modern communication technology”. Thus, Wiener came to believe that “the problems of control engineering and of communication engineering were inseparable, and that they centered not around the technique of electrical engineering but around the much more fundamental notion of the message, whether this should be transmitted by electrical, mechanical, or nervous means.” (Wiener 1948: 16, my emphasis).

	When Von Neumann read the paper by McCulloch and Pitts in the early 1940s, he was as impressed as Wiener, who had recommended it to him, by the potential mathematical regularity that was brought to the complex phenomena of information processing in the human brain. Like Wiener, Von Neumann believed in the possibility of unifying the work of Turing on computing machines, and of McCulloch and Pitts on neural networks, with that of Shannon on communication systems, into a general theory applicable to machines, minds, and organisms. In order to capture their similarities, Von Neumann proposed to conceive of all such systems as “automata”, i.e., as digital information processors the individual elements of which (e.g., vacuum tubes, neurons, cells) could be represented as simple input-output mechanisms giving discrete (all-or-none) responses to discrete stimuli. (Aspray 1990: 190-1)

	Although he considered the conceptualization of Turing machines and neural networks as the two most significant developments toward such a formal theory of automata, Von Neumann was dissatisfied with what the approach of formal logic could contribute to the actual construction of computing machinery, with which he was concerned. The first reason for this dissatisfaction was that formal logic did not take into account the limitations of computation due to “tractability” constraints. He was one of the first to observe that even if a problem is computable in principle, it might be “intractable” in practice when the resources needed to compute it are scarce.� Since universal Turing machines were assumed to have an infinite amount of storage space (memory) and computation time, Von Neumann considered them not very useful in practice. A second problem of formal logic was that it was essentially deterministic, thereby not allowing for the possibility of errors. As an alternative, Von Neumann suggested a probabilistic theory of information processing, which incorporated the work of Boltzmann, Hartley, Szilard and Shannon.

	Due to a fatal bout with cancer, Von Neumann never completed his general theory of automata. Several of his documents, however, which were written during the years 1948-1953 and contained a programmatic framework for the future development of the theory, were published posthumously (Von Neumann 1958, 1961-3, 1966) and taken up by later researchers in the fields of neurophysiology and computer science.�





3.5 The Cybernetics of Cybernetics

Although cyberscientists had initially been convinced that the behavior of humans, animals, and machines could be explained by the same general theory, the father of cybernetics, Norbert Wiener himself, had already been quite pessimistic about the applicability of cybernetics to social systems. Among the reasons for his pessimism were, first, the fact that the time series of social science data are usually too short, second, the problem that social systems cannot be temporarily closed off from their environment, and third, the likelihood of social scientists to influence their object of study by the very act of studying them (cf. Geyer 1995: 15). Nevertheless, the concepts of communication, control, and information did have an obvious “social” connotation, and many social scientists, economists in particular, were attracted by the idea of providing their “soft” theories with a “hard” mathematical foundation.

	In the 1970s, these promises became even stronger with the introduction of so-called “second order cybernetics”, a term which was coined by the biophysicist Heinz von Foerster. During the years 1946-1953 Von Foerster had attended several of the Macy Conferences on Feedback Mechanisms and Circular Causal Systems in Biology and the Social Sciences. Among the core of people who participated in these conferences, which were also known as the Conferences on Cybernetics, were Pitts, McCulloch, Wiener, and Von Neumann. (Aspray 1990: 187). At the 1970 meeting of the American Society for Cybernetics, Von Foerster presented a paper entitled Cybernetics of Cybernetics, in which he made a distinction between what he called “first order” and “second order” cybernetics. First order cybernetics, according to Von Foerster, was the cybernetics of observed systems; an “engineering approach” in which systems were treated as black boxes with well defined sets of inputs and outputs. Second order cybernetics, on the other hand, would be the cybernetics of observing systems. As opposed to first-order cybernetics, which was meant to develop control systems for inanimate technological devices, it would deal with autonomous systems which cannot be controlled since they have the ability to reflect on their own operations on the environment, and to adapt their behavior accordingly. The focus, thus, would not be on the input-output relation between a system and its environment, but rather on the system’s internal organization. Moreover, it would explicitly take into account the fact that the theorists or theories describing such “observing systems” are themselves observing systems as well. Hence the term “cybernetics of cybernetics” (Von Foerster 1984).

	In spite of the promises of cybernetics, however, the many interdisciplinary efforts never resulted in the grand science of cybernetics or information processing that Wiener and Von Neumann had envisioned. In the end, as Aspray (1990: 211) noted, “no theory of automata ever materialized that coordinated the design of computing machinery and the study of information processing in the biological realm”. The methods and concepts which originally had been appropriated for a universal ‘cyberscience’ ended up being applied to the particular interests of psychologists, physiologists, engineers, mathematicians, and computer scientists. This, in turn, led to the development of artificial intelligence, recursive function theory, control theory, communication engineering, cognitive computer science, and robotics - a plurality of cybersciences rather than a unified discipline.





4. COMPLEXITY

As even economists have discovered by now, ‘complexity’ is the word of late 20th century cyberscience. As it turns out, however, even among the ‘complexeologists’ at the Santa Fe Institute in New Mexico, there is little agreement concerning the definition of this term. By the end of the 1980s, a list compiled by MIT physicist and Santa Fe adjunct Seth Lloyd showed that at least 31 definitions of ‘complexity’ had already been proposed. Interestingly, as Horgan (1995: 106) reported, most of these definitions involved “concepts such as entropy, randomness, and information - which themselves have proved to be notoriously slippery terms.”



4.1 Computational Complexity

The concept of ‘complexity’, as a measure for the computational capability of an information processing system, appears to have been introduced, or at least anticipated, by John von Neumann:

 

“There is a concept which will be quite useful here, of which we have a certain intuitive idea, but which is vague, unscientific, and imperfect. This concept clearly belongs to the subject of information, and quasi-thermodynamical considerations are relevant to it. I know no adequate name for it, but it is best described by calling it “complication”. It is effectivity in complication, or the potentiality to do things. I am not thinking about how involved the object is, but how involved its purposive actions are. In this sense, an object is of the highest degree of complexity if it can do very difficult and involved things.” (Von Neumann 1966: 78)



In the mid-1960s, several attempts were made to formalize this “vague, unscientific, and imperfect” concept with the help of Turing’s work on computation and, again, that of Shannon on information theory. Almost simultaneously and apparently independently of each other, Solomonoff (1964), Kolmogorov (1965) and Chaitin (1966) proposed to define the “computational complexity” of an object as its minimum description length on a computer. More specifically, the algorithmic complexity K(x) of an object x was defined as the number of bits of the shortest algorithm that would compute x on a universal deterministic Turing machine. By representing x as a data-string sn  of n discrete and independent symbols, the expected value of its complexity was then shown to equal the maximum expected entropy of the string, H* = log n.� Intuitively, since maximum entropy requires that each symbol in the string conveys an equal expected amount of information, it implies that there is no pattern at all to be detected in the sequence of symbols, so that its minimum description length cannot be a bit shorter than the length of the string itself, i.e., n bits. 

	An interesting result was that, while x itself was computable on a universal Turing-machine, K(x) turned out to be not computable in general, i.e. there did not seem to be an effective way to find the shortest program to compute a given object, or its corresponding binary string. 	It was this result which attracted the attention of economists some twenty years later. At the end of the 1980s, articles started to appear in which it was proven, by means of computational complexity theory, that many economic optimization problems are uncomputable as well. In this way computational economists showed, mostly without being aware of it, that information theory could be applied to economics after all.



4.2 Computational Economics

The notion that scarce computational resources, such as time and memory, may constrain the optimizing behavior of economic agents, has circulated in economics for quite a while now under the rubric of “bounded rationality” (cf. Futia 1977). This term was coined in the 1950s by economist/psychologist Herbert Simon, who outside economics is generally regarded as one of the founding fathers of “artificial intelligence”.�

	Although Simon was concerned with sequential symbol processing, it was the philosopher Hilary Putnam who apparently was the first to use Turing machines to model rational economic behavior. In a paper called “The Mental Life of Some Machines”, Putnam (1967) assumed that Turing machines were endowed with “rational preference functions”, could “behave” so as to maximize expected utility, and could thus be considered “rational agents”, “in the sense in which that term is used in inductive logic and economic theory” (Putnam 1967: 409, quoted by Velupillai 1994: 3). Since Putnam also founded the modern theory of induction, together with Kolmogorov, Chaitin, and Solomonoff, he has recently been called “a parent twice over computable economics: in computable rationality and in computable learning.” (Velupillai 1994: 3)

	The step from simulating optimization problems to analyzing the computability of such problems was made by Campbell, Gottinger and others in the 1970s - and later by Putnam’s student Alain Lewis in the early 1980s. Following this work on the computability of choice functions, Rustem & Velupillai (1990) showed that for a finite set of pairs (x,y), it is “undecidable” whether x is at least as good as y - which means there is no computable function that can determine whether a Turing Machine would eventually halt on this problem.

	Alfred Norman (1994) connected these results with computational complexity theory. He noted that the computational complexity of finding the most preferred item in a one-time choice problem is n, i.e. the length of the shortest algorithm which finds the largest number in a sequence of n symbols. The combinatorial complexity of ranking all alternatives, on the other hand, is much higher. It is equivalent to the complexity of sorting a file, which is equal to n ln n . From this Norman concluded that a rational consumer who has to make a one-time choice would never determine a complete preference ordering, that is, if computational resources are scarce.

	Game theorists as well are now in the process of developing complexity measures for playing strategies, or “implementing automata” as they now call it. In accordance with the Solomonoff-Kolmogorov-Chaitin approach, the “complexity of a strategy” is measured as the number of states of the smallest automaton prescribing it. Achieving a specified strategic complexity has been shown to increase the computational complexity of computing the best response automaton, which can make such a computation either theoretically or practically impossible. 

	A crucial implication of the computational literature is that, even if economists were to have “perfect information” about the choice set available to, and actual choices made by an agent, it might be impossible for them to derive from this what the agent’s preferences are, i.e. to learn how the agent maps preferences into choices. The theorem of revealed preference is thus invalidated, not just because preferences may be determined endogenously, or because the mapping itself might be subject to change, but, rather, because the mapping is too complex, so that its derivation is an uncomputable or intractable problem for the economist. In that case, the behavior of economic agents becomes inherently unpredictable. As Rustem and Veluppilai (1990: 431) have it,



“some aspects of behaviour cannot be encapsulated by any formalism at all. It can, so to speak, be studied only as it unfolds. The connection with the implications of Gödels’ theorem for the formalists' programme enunciated by Hilbert is immediate.”



But if economists cannot compute the optimum choices of economic agents, how can we assume that economic agents can? The answer is that we can not, or at least we know that it will take them a certain amount of time and memory, depending on the complexity of their choice functions. If agents attach disutility to the expenditure of these computational resources, it might be rational for them to prefer suboptimal simple decision rules to the optimal, complex one.  According to Rustem and Veluppilai (Ibid.), all economists need to do, then, is to find these decision rules:



“Since the predictable part can be formulated by Turing Machines, any assumption about intrinsic preferences [is] irrelevant. We can, not only do without any vestigial traces of the utility concept, but also without any vestigial traces of the preference concept! All we need to study are the decision rules - or the computable functions.”





4.3 The Complexity of Choice

At first sight, the concept of  “information” does not seem to play a crucial role in the computational economics literature. For instance, none of the results that were mentioned above depend on the presence of “imperfect information” or uncertainty. As mentioned before, however, there is a formal relation between complexity theory and information theory, which has not remained completely, unnoticed. It has been argued, e.g., that “in general the amount of information needed for playing a strategy equals the complexity of the strategy” (Norman 1994: 12).

	In my view, this interpretation is not quite right. The formal equivalence between the information and complexity measures does not refer to the information that is needed for computing a strategy, but rather to the information that is gained once a strategy is known. In order to compute their optimum strategies, agents do not need “information"; they need computational power. The more complex the strategy, the more computational power is needed, and the higher the expected information gained by the receiver of the message that a particular strategy has been played

	It would be equally misleading to equate the complexity of a choice function with the amount of information needed by an agent for making an optimal choice. Even if economic agents have “perfect information”  (i.e. no “missing information"), their choice function can be quite complex, to such an extent that the optimum solution might be uncomputable, intractable, or undecidable.

	Now what exactly determines the complexity of a strategy, or to take an easier example, of a choice function? As noted above, the algorithmic complexity of an object is defined as the number of bits of the shortest program that computes the string on a universal Turing machine. Thus, if an optimal choice has to be made between n commodities, then the expected complexity of this choice is equal to n bits. In other words, the complexity of making an optimal choice, or the expected amount of information revealed by its communication, increases with the number of possible choices. This was already noted by Shannon, when he wrote that “[q]uantities of the form H = - (i pi log pi ... play a central role in information theory as measures of information, choice and uncertainty” (1948: 20). Or in Weaver’s (1949: 109) words, “greater freedom of choice, greater uncertainty, greater information go hand in hand”.

	Although it is intuitively obvious that the larger the set of possible choices, the higher the uncertainty with respect to which actual choice is going to be made, this interpretation has led to much confusion, since it contrasts which our common sense notion that information and uncertainty are each other’s inverse. In my view, this confusion is partly due to the failure of Shannon himself to clearly distinguish between expected information, on the one hand, and actual information on the other. As explained above, it is only in the case of maximum entropy, in which all choices are equally probable (pi=1/n, (i), that the actual amount of information received is exactly equal to the expected amount, given by H* = log n.

	If n is known, the amount of information, or the complexity of the choice function, can be known in advance with complete certainty. At the same time, however, there is maximum uncertainty as to which of the possible choices is going to be made. Thus, it is only when all choices are expected to be equally probable, and expected and actual information received are equal to log n, that the complexity of a choice function is completely determined by the number of choices. In this case, then, freedom, complexity, uncertainty and information do indeed appear to be positively rather than inversely related: the larger the number of choices, the more freedom, the higher the complexity of the choice function, the more uncertainty prior to the making of a choice, and the larger the amount of information conveyed. In the more general case, however, the entropy measure (H = - (i pi log pi) is a measure of the expected, and not of the actual amount of information conveyed by a message, and it is only in that sense that it can be considered a measure of uncertainty.

	This point was well taken by the Dutch econometrician Henri Theil. He argued explicitly that the amount of information that is received when a message (e.g. concerning a choice) arrives, must be considered as a random variable, the expectation of which is equal to its entropy. In this sense entropy could indeed be regarded as “a measure for the uncertainty regarding the outcome, the argument being that uncertainty prior to the arrival of the message and expected information provided by the message are two sides of the same coin” (Their 1972: 13).  



4.4 The Relativity of Information

The disproportional amount of attention that has been paid to the maximum entropy case has concealed the fact that entropy - like the amount of expected information, uncertainty, and complexity - is a function not just of the number of messages, but also of the probability distribution of these messages. If some messages are more probable than others are, then there is less uncertainty, complexity and expected information than there would be in the equiprobable case.

	An important argument against the application of Shannon’s information measure to domains outside of engineering is that, in the social realm, the probability distribution of “messages” is not known; that there is real, radical, uncertainty rather than “risk”. With respect to economics, for instance, one might argue that there the probability distribution of choices cannot possibly be known. This is a problem not so much for economic agents, but rather for the economists observing them.

	A typical answer to this problem is that, no matter how uncertain people are, they might be assumed to be able to determine at least a subjective probability distribution. As far as economists are concerned, this assumption might not be unreasonable, since specifying one’s expectations is precisely what scientists are meant to be doing. If she finds no reasons to assume otherwise, an economist might well expect each choice to be about equally likely to be made, in which case the expected information of the message that the agent made a particular choice is high for her. The complexity of the choice function, then, is not equal to the information needed by the economic agent, but to the amount of information which the economist expects to gain from knowing which choice has actually been made. Obviously, this amount of information may differ from economist to economist.

	According to the information economists, it is precisely because of this relativity of information that the entropy measure cannot be applied to economics. This criticism, however, could also be applied to the use of entropy as a measure of complexity. As was pointed out by Horgan (1995: 106), one of the problems of the Solomonoff-Kolmogorov-Chaitin complexity measure is, indeed, that it equates complexity with randomness: “according to this criterion, a text created by a team of typing monkeys is more complex - because it is more random - than Finnegans Wake.”�

	While there are definitely more patterns to be detected in Joyce’s novel, most of us would consider it as more complex, and expect it to contain more information, than the monkey text. Thus “complexity” appears to suffer from the same problem as “information": it does not take human interpretation or “meaning” into account.



4.5 The Relativity of Complexity

The similarity between Horgan’s critique and the information economists’s criticism of Shannon’s measure is striking. What neither Horgan nor the information economists seem to have noticed, however, is that different measures of complexity have recently been developed which are still stated in terms of entropy but are able to deal with this criticism. These measures are all based on the same idea, and they were proposed at about the same time under the names of ‘stochastic complexity’ (Rissanen 1986, 1989), ‘relative complexity’ (Chaitin 1987), and ‘statistical complexity’ (Crutchfield and Young 1989). Since the measures are quite similar, I will denote them all by the common term second-order complexity, which contains the first-order complexity of Solomonoff, Kolmogorov, and Chaitin as a special case.

	The gist of second order complexity measures is that they consider complexity, like information, as a relative concept, the amount of which varies with to the reference frame of the observer. More specifically, it is defined as the minimum description length, Mmin, of an object x within a chosen “vocabulary” V. This vocabularycould be thought of as a computer language, but also as “paradigm” which both enables and constrains the way in which agents (such as econometricians or economic actors) observe the world:



C(x) = Mmin (x |V)



This formulation captures the definition of first-order complexity, which was the number of bits of the shortest program that computes x when run on a universal deterministic Turing machine (UTM):



K(x) = Mmin (x |UTM)



As noted before, the problem with this first-order definition is that K(x) itself is not generally computable on a deterministic Turing machine. In order to operationalize the complexity measure, it is therefore necessary to consider specific, computable vocabularies. Rissanen’s (1986, 1989), for instance, suggests a definition of stochastic complexity, in which the vocabulary consists of a probabilistic model class with parameter vector (:



V = {f(x|(), g(()},



where f(x|() is the distribution of the data (e.g. a string of symbols) given a set of model parameters, and g(() is the (subjective) probability distribution of the model parameters, so that



p(x) =  ( f(x|() dg((),



can be interpreted as the expected (subjective) likelihood of the data.

	The stochastic complexity of the data is now computed by an “inverse” maximum likelihood estimation procedure: rather than taking the data as given, and choosing the parameters of the model so as to maximize the (objective) likelihood of the data, we take the class of models f(x|() and the parameter distribution g(() as given, and choose a data string x so as to minimize the (subjective) likelihood of the data p(x). This data string, given by



x* = argmin p(x) = argmaxx  - log p(x),



is said to be maximally ‘complex’, in the sense that it maximizes ‘relative entropy’ H(x) = - log p(x), i.e. the relative (subjective) information conveyed by the message that the data have occurred.

	By taking into account the relativity and subjectivity of expectations, second-order complexity measures are able to deal with at least part of the problems that Marschak and Arrow had with first-order complexity. They also live up to Horgan’s criticism, in the sense that they do not equate complexity with randomness per se, but only with what appears to be random (unpredictable) given a specific model of the environment. It is only when each string is believed to be equally likely (f(x|() is uniform) that maximum complexity coincides with maximum randomness.� 



4.6 The Complexity of Complexity

To what extent agents are able to form correct models of the true DGP depends on their computational capacities, as well as on the ‘complexity’ of the DGP. A UTM, by definition, has unlimited resources and is thus, in principle, capable of computing the correct model, although this might take eons of time. Non-universal computers, by contrast, have limited amounts of memory space and computing time, and are constrained by specific “languages”. Different computers, therefore, may assign different complexities to the same data, just as different agents may assign different information values to the same messages.�

	It is, of course, not impossible for a non-universal computer to produce a correct model of the DGP. If the data-generating process is ‘simple’ relative to the computational capabilities of the observer, it might well be possible to get a 100% fit. According to the Law of Requisite Variety (Ashby), a system is able to account for all variation in its environment if its internal complexity is at least as high as the external complexity. This suggests that a correct model can be produced if the complexity (entropy) of the data is low compared to the complexity (entropy) of the model that simulates the string. As is well known to statisticians, there exists a trade-off between these two complexities. In Crutchfield’s (1994: 7) words: 



“Minimizing the model size alone leads to huge error, since the smallest (null) model captures no regularities; minimizing the error alone produces a huge model, which is simply the data itself and manifestly not a useful encapsulation of what happened in the laboratory. So both model size and the induced error must be minimized together in selecting a “best” model. Typically, the sum of the model size and the error is minimized.”



In order to formalize this idea, one may consider a model as a computer program which simulates a string of symbols, and which itself can therefore be represented as a string which can be simulated by another model or program. GIven that the complexity of a string is defined as H(x), the size of the shortest program for computing x, the complexity of this program could be defined as as H[H(x)], the size of the shortest program for computing the shortest program for computing x. This is the proposal made by Chaitin (1987, 1992), whose recent measure of relative complexity is equal to the joint complexity of the data and the model:



K(x) = H[x + H(x)] = H(x) + H[H(x)|x].



In words, this object denotes the size of the shortest program computing x, plus the size of the shortest program for constructing H(x) from x. Equivalently, one could write 



K(x) = H[H(x)] + H[x| H(x)],



which could then be interpreted as the size of the shortest “meta-program” computing H(x), plus the size of the shortest program which uses H(x) to simulate x. It is this second term which Chaitin calls the relative complexity of x given H(x).�

	That his redefinition of complexity is in fact “correct”, can be proven, according to Chaitin (1992: 200), by the fact that it results in measures of joint and mutual complexity which are equal to Shannon’s measures of joint and mutual information. Joint complexity, namely, is denoted by



	H(x,y)	= H(x) + H(y|x)

		= H(y) + H(x|y),



whereas mutual complexity is equal to Shannon’s “rate of transmission” or “mutual information”:



	H(x:y) = H(x) + H(y) - H(y|x)

		= H(x) - H(x|y)

		= H(y) - H(y|x).



In Shannon’s terminology, x was considered a message sent through a communication system, and y the message received. Similarly, H(y|x) was taken as the amount of received information due to noise (corresponding to the probability of receiving y given that x was sent), and H(x|y) as the amount of “missing information”, that is, the amount of additional information that would have to be supplied in order to correct the received message. The joint information of x and y could then be reinterpreted as (1) the amount of information sent plus noise, or (2), the amount of information received plus the “missing information”.

	It turns out that Chaitin’s model is equivalent if we take y = H(x). In this interpretation, H(x) is the expected amount of information, or the entropy, of the process which generates (‘sends’) the data, and H(y) is the entropy of the model which simulates this data-generating process. Accordingly, H(y|x) could be considered as the expected amount of information needed to construct the model from the data, and H(x|y) as the remaining information needed to reconstruct the original data from the model. The “joint complexity” of data and model, then, can be redefined as (1) the complexity of the data, simulated by a correct model, plus the computational costs of constructing this model from the data, or (2) as the complexity of the model plus the remaining complexity of the data given the model.

	What at first sight seems a little confusing, is that Chaitin continues to denote his joint complexity measure by H(x), and seems happy to abuse notation by writing H(x) = H(x) + H(y|x), without assuming H(y|x) = 0. This apparent inconsistency might be understood, however, in relation to arguments which Chaitin has made elsewhere (e.g., 1992: 145-159) in defense of a “probabilistic mathematics”, which uses hypotheses instead of axioms . If that is indeed what he has in mind here, one might interpret the first H(x) as an estimator of the second, so that the term H(y|x) could be regarded as an “error term” - which would be very much in agreement with Shannon’s interpretation of it as “noise”.

	Moreover, this indicates quite clearly where the former, deterministic, measure of complexity went wrong. If the “real” measure of complexity is H(x,y), namely, and if it is given that

H(x,y) = H(x) + H(y|x),



then the old measure of complexity, by measuring complexity as H(x) only, has simply made an error of size H(y|x). In fact, it presupposed not only a UTM which could compute the correct entropy H(x), it also assumed that there were no computational costs involved in constructing the correct model from the data, i.e. H(y|x) = 0. These assumptions are correct only when the complexity of the data is equal to the complexity of the model, i.e. H(x) = H(y). As noted before, however, a machine is able to produce a correct model of its environment only when its internal complexity is at least as high as its external complexity. The same holds for economic agents, as well as for economists.





5. CONCLUSION

Economists tend to conceive of information either as a commodity, which can be demanded, supplied, bought and sold, and to which utilities and costs can be attached, or as knowledge, which can be either “perfect” or “imperfect”. Since both the value of information-as-commodity, and the amount of information-as-knowledge, are deemed essentially “subjective”, the first information economists did not see how the Shannon information measure could be used in economics. Their main complaint was that it treated information like a physical entity, and was independent of human needs, whereas the utility, and certainly the expected utility, of information was regarded as being inherently different from person to person. It was admitted that the different measures of utility, cost, and amount of information could be made identical by assuming logarithmic utility and cost functions, but this was considered a rather special case. It was concluded, therefore, and is still believed that



 “Shannon’s well-known measure of the quantity of information... was formulated to serve the specific needs of communications theory, and has been found unsuitable for application in economics.” (Dasgupta & David 1994: 493n) 



After Marschak and Arrow, however, economists have been making different attempts at transforming economics into a cyberscience. These do not so much focus on the concept of information, but center, rather, around that of computation. Rather than referring to Shannon, the new computational economists are now using Turing machines, neural networks, and cellular automata, to analyze the computational capacities of economic agents. What appears to be relatively unknown is that the cybersciences that developed these concepts, did manage to relate their theories to Shannon’s information theory. Not only is the definition of computational (first order) complexity, i.e. the number of bits of the shortest program that produces a string of symbols as an output, exactly equal to Shannon’s definition of the expected “amount of information” contained in this string; it is also the case that the more sophisticated definitions of (second order) complexity, which explicitly deal with its relativity, can still be formulated in terms of information theory. This implies that the conclusions of Marschak and Arrow will have to be retracted.

	Since it explicitly takes into account the fact that information and complexity are subjective (relative to the reference frame of observers), the notion of second-order complexity is arguably more applicable to economics and other social sciences. In my view, however, the most promosing area of economic application is not the computational complexity of the mind, but rather that of the economy as a whole, which could be analyzed, for instance, in terms of ‘monetary entropy’, i.e. the ‘economic information’ contained in distributions of incomes, wages, and prices.� Just as economic agents, economic systems can be considered as ‘computers’, which produce and consume enormous amounts of data based on models of its environment and of itself. In view of the history of economic ideas, my recommendation is, therefore, that computational economists should not try to reinvent articifical intelligence, or replicate artificial life, but use their own computational powers to study the complexity of artificial economies.
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